由(x2 y2)2=x2-y2围成的平面区域的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:23:37
xy/x+y=1/3x+y=3xyx2y2/x2+y2=1/5(xy)²/[(x+y)²-2xy]=1/5(xy)²/[(3xy)²-2xy]=1/5(xy)&
∵(x2+4y2)2-16x2y2=0(x2+4y2+4xy)(x2+4y2-4xy)=0(x+2y)2(x-2y)2=0∴x+2y=0,x-2y=0∴y=-12x或y=12x.
当x>0时,因为(x1,y1),(x2,y2)都在反比例函数y=1/X上,所以当x1>x2时,y1
xy=1x1y1=1x2y2=1则x1y1=x2y2x1/x2=y2/y1>1∴y2>y1
x3y+2x2y2+xy3=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=5,∴(x+y)2=25,x2+y2+2xy=25,∵x2+y2=13,∴xy=6,∴xy(x+y)2=6×25=1
如果这是个填空题或者选择题,需要你快速做出解答的话,你可以这么思考:y=kx和y=4/k这两个函数都是相对原点对称的图形(你可以在脑海中大致想想他们在坐标系中的草图),从而判断出该直线和双曲线的交点也
∵x+y=4,∴(x+y)2=16,∴x2+y2+2xy=16,而x2+y2=14,∴xy=1,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=14-2=12.
Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y
将3维基本向量组a1=(1,0,0)^T,a2=(0,1,0)^T,a3=(0,0,1)^T正交单位化易知a1,a2,a3两两正交单位化:b1=a1/||a1||=(1,0,0)^Tb2=a2/||a
由于曲面z=2-x2-y2及z=x2+y2所的交线是x2+y2=1,因此Ω在xOy面上的投影区域为D:x2+y2≤1∴Ω的体积为 V=∭Ωdv=∫2π0dθ∫10ρdρ∫2−ρ2ρ2dz=∫
原式=9x2y2(x2+xy-y2)-3x2y2(3x2+3xy+y2)=9x4y2+9x3y3-9x2y4-9x4y2-9x3y3-3x2y4=-12x2y4,当x=-43,y=-32时,原式=-1
题目不清楚是不是y=12x^2把圆的方程化为y=根号下(8-x^2)这时只包括y正轴区域的半圆和y=12x^2进行积分求出两曲线之下的面积再用半圆面积减之求得围城面积
由x²+y²-4x-10y+29=0得(x-2)²+(y-5)²=0所以x=2y=5所以x²y²+2x^3*y²+x^4*y&su
图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,
在电脑上画这种图确很困难,就免了吧!此类二重积分最好用极坐标进行计算.积分域D:由x²+y²=2ax,得(x-a)²+y²=a²,这是一个园心在(a,
解题思路:圆的参数方程解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.
由x2+y2=2x,得y2=2x-x2≥0,∴0≤x≤2,x2y2=x2(2x-x2)=2x3-x4.设f(x)=2x3-x4(0≤x≤2),则f′(x)=6x2-4x3=2x2(3-2x),当0<x
(x-y)2=x2-2xy+y2=9,当x2+y2=13时,13-2xy=9,解得xy=2.当xy=2,x2+y2=13时,x3y-8x2y2+xy3=xy(x2-8xy+y2)=2×(13-8×2)
(2X²-2y²)-3(X²y²+X²)+3(X²y²+y²)=2x²-2y²-3x²y&
因为x²+4y²+x²y²-6xy+1=0(x²-4xy+4y²)+(x²y²-2xy+1)=0(x-2y)²