im n→无穷(根号n^2 a^2) n=1的证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:08:10
lim[√(n+2)-√(n+1)]√n=lim√n*[√(n+2)-√(n+1)][√(n+2)+√(n+1)]/[√(n+2)+√(n+1)]=lim√n*(n+2-n-1)/[√(n+2)+√(
证明:∵X1>0,Xn+1=(1/2)(Xn+a/Xn)(n=1,2...,a>0)==>Xn>0(n=1,2...,)(应用数学归纳法证明)==>Xn+1=(1/2)(Xn+a/Xn)≥(1/2)(
再问:大神小的第二步没看懂为什么ln直接没了⊙_⊙再问:第二步突然懂了不好意思哈我是菜鸟→_→再问:大神第三步怎么来的?真心看不懂求解( ̄∇ ̄)我太笨了。。。。。再答:第三步是洛必达,对分
分子有一晔lim(n→+∞)[√(n^2+n)-n]=lim(n→+∞)[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=lim(n→+∞)n/[√(n^2+n)+n]=1/
分子分母乘以(根号(n+1)+根号n)原式=根号n/(根号(n+1)+根号n)=1/(1+根号((n+1)/n))n趋向无穷时原式为1/2
1、这类极限是无穷大减无穷大型不定式;2、固定的解法是三步曲: A、分子有理化; B、化无穷大运算成无穷小运算; &nbs
原式=limn^(2/3)/(n+1)*sinn!=(对左边那个分子分母除以n)limn(-1/3)/(1+1/n)*sinn!这样就写了一个无穷小量乘以有界量的形式所以极限是0
n[√(n²+1)-√(n²-1)]=n[√(n²+1)-√(n²-1)][√(n²+1)+√(n²-1)]/[√(n²+1)+√
请及时点击右下角的【采纳为满意回答】按钮你有问题也可以在这里向我提问:
设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(
等比数列求和1+a+a^2+...+a^n=1*(1-a^n)/(1-a)1+b+b^2+...+b^n=1*(1-b^n)/(1-b)|a|
分子分母除以n=2/[√(n²+n)/n]=2/√[(n²+n)/n²]=2/√(1+1/n)n趋于无穷则1/n趋于0所以极限=2/1=2
先有理化,然后分子和分母各除以n²
(n+1)(根号n^2+1-n)*(根号n^2+1+n)/(根号n^2+1+n)=(n+1)*1/(根号n^2+1+n)上下同时除以n=(1+1/n)/(根号1+1/n^2+1/n)=1/1=1
(1)当|x|<1时limn次根号[1+x^(2n)]=n次根号(1+0)=1(2)当|x|=1时limn次根号[1+1^(2n)]=limn次根号(2)=1(3)当|x|>1时limn次根号[1+x
级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因 √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要
|(根号n^2+a^2)/n-1|=|根号(n^2+a^2)-n|/n=a^2/n(n+根号(n^2+a^2))N有|(根号n^2+a^2)/n-1|
√(n^2+4n+5)-(n-1)=[(n^2+4n+5)-(n-1)^2]/[√(n^2+4n+5)+(n-1)]=(6n+6)/[√(n^2+4n+5)+(n-1)]=(6+6/n)/[√(1+4
根号2n+根号3n/根号下2n-根号下3n=[根号(2/3)^n+1]/[根号(2/3)^n-1]n趋向无穷,根号(2/3)^n趋于0lim...=1/(-1)=-1
lim{根号(n^2+1)+根号n}/{四次根号(n^3+n^2)-n}=limn/n*{根号(1+1/n^2)+根号1/n}/{四次根号(1/n+1/n^2)-1}=-1再问:第一步怎么到第二步?怎