用相关性分析和回归分析法,分析调查问卷结果,找出问卷中的相关关系及因果关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:03:18
首先要知道饱和流量的计算方法,通过对交通调查数据进行回归分析,得出车流量与车头时距的函数关系,计算出不同车道宽度对应的饱和车头时距. 曲线拟合回归分析法在胡良建m
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
相关分析,是看2个因素之间的相关性,也就是2个因素之间是否有关联;如果计算出来是1,那么2个因素是完全正相关,如果是0,那么说明这2个因素完全不相关,如果是负数,那么说明2个因素是负相关.打个比方,身
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
线性回归哪个是因变量,哪个是自变量呢再问:60岁及以上人口是因变量其余是自变量?再答:相关一张张图传麻烦,给个QQ我发你再问:.
你的问题不太明确.一般来说,个人常用的方法有两种(前提是每个题的选项都是一致,如都为测量态度的五级,从非常不同意到非常同意):累加形成新变量.可将一组同性质的题目每题的选项分别按照非常不同意=1,比较
一般统计分时所做的相关是指Pearson相关或者Spearman相关,而Losgistic回归也即多元回归分析是一个更高层次的相关分析,数据要求质量比较高.如果数据用Pearson相关或者Spearm
这个……发现你对统计一点都不理解……性别是分类变量你这里的应变量是等级分类变量暂时还不知道你要分析哪些指标的相关性.建议:找对统计了解的人解决.
应该是用重复测量的方差分析来做的
anovab是对回归关系的方差分析,做的一个F检验,P
如果L1L3的系数不显著的话,可以不必管它,因为相关系数本身就不高0.254和0.236.虽然是两两相关,但是相关系数包含了其他因素的影响,而回归方程中的系数表示控制了其他2个变量的影响后,该变量与因
分数没用的你有什么问题直接说我经常帮别人做这类的数据分析的再问:那我加您,辛苦了,我的问题都挺基础的...
滞后期p一般是1个1个往上加每加一个就用t,F统计检验看看各个系数然后断定是否继续加这样
这个矛盾是表面上的,是正常的.相关分析与回归分析是两种不同的方法,自然会有不同的结果.更关键的,在回归分析中,你的模型可能存在着多重共线问题,而多重共线的一个后果就是改变回归系数的符号.建议办法:采用
可以将被剔除的变量做回归分析,但如果相关系数过高,可能会产生多重共线性(参数t检验无法通过),到时候可以去剔除法或者SPSS的逐步回归法做就行第一个图是方差分析表,其实意义不需要过多强求,主要看F值对
刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值
回归分析法,谁能告诉我详细算法?是一个一元线性回归模型,就是要确定a和回归系数b.需要多组成对的数据(X,Y),组数就是N.然后,代入公式就行了.还要计算决定系数,评估回归分析的质量.
你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了
那你分析错误了,操作对吗再问:对的,回归分析得出结果和相关性分析的不一样,这种情况不存在的吗。可以解释吗再答:肯定做错了的,一般不会
虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚