用直角坐标计算∫∫xy∧½dδ其中D是由两条抛物线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:15:02
下图用两种解法积分,点击放大:
【数学之美】团队为你解答,如果解决问题请采纳.
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
∫∫根号下(y^2-xy)dxdy=∫(0,1)[∫(0,y)根号下(y^2-xy)dx]dy=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y)d(1-x/y]dy=∫(0,1)[∫(0,y
你等一下我,我一会帮你算再问:好的,谢谢再答:再答:再问:谢谢哈再问:利用格林公式计算二重积分∫∫e^-y^2dxdy、其中D是以(0、0)、(1、1)和(0,1)为顶点的三角形区域再问:这个会吗?我
积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5
记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y
原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr(极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcos
三个交点是(1,1),(2,2)和(2,1/2),积分区域是1
原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³
可以使用符号函数,比如:%Bylyqmathclc;clearall;closeall;symsxyeq=exp(x*y)-2*x*y;z=int(int(eq,x,1,0),y,-1,1);vpa(
∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-
可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.
∫[0,π/2]d(α)∫[0,cosα]f(rcosα,rsinα)rd(r)=∫[0,1]dx∫[0,根号(1/4-(x-1/2)^2)]f(x,y)dy就是把r=cosα-->r^2=rcosα
换成极坐标x=pcosty=psintp∈[0,a]t∈[0,2π]∫∫e^(-x^2-y^2)dδ=∫[0,2π]dt∫[0,a]e^(-p^2)pdp=t[0,2π]*[-1/2e^(-p^2)]
∫∫(D)(x²+y)dxdy=∫(1→2)dx∫(1/x→x)(x²+y)dy=∫(1→2)[x²y+y²/2]|(1/x→x)dx=∫(1→2)[x
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/