用消元法解线性方程组2X1-X2 3X3=3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:43:54
这个我会,但是在这不好编辑,你可以把这三个方程式中的x1,x2,x3他们前面的系数组成一个3*3的矩阵,进行解答
两个方程组同解的充分必要条件是行向量组等价设方程组1,2的增广矩阵分别为A1,A2考虑分块矩阵H=(A1;A2)--上下放置则r(A1)=r(H)=r(A2)H=110-2-64-1-1-113-1-
原方程组即(2-λ)x1-x2-2x3=05x1-(3+λ)x2-3x3=0-x1+(2+λ)x3=0因为方程组有非零解,所以系数行列式等于0|A|=2-λ-1-25-3-λ-3-102+λ=(λ+1
┏2-453|7┓┃3-642|7┃┗4-81711|21┛→﹙行初等变换﹚→┏10-1-1|0┓┃0100|0┃┗0075|7┛﹙x1,x2,x3,x4﹚=﹙1,0,1,0﹚+k﹙2,0,-5,7﹚
该方程组的系数矩阵为11111111111123-1-2→01-3-4→01-3-4562101-3-40000所以,原方程组与方程组X1+X2+X3+X4=0,x2-3x3-4x4=0同解,令x3=
1111111111112345→0123→0123456701230000所以,原方程组与方程组X1+X2+X3+X4=0,x2+2x3+3x4=0同解,令x3=1,x4=0,得到方程组的一个解为(
第二个方程减去第四个方程得x2+3x3-4x4=2然后再加上第一个方程得2x3-3x4=2(1)(消去了x1)第三个方程减去2倍第四个方程得2x2+4x3-4x4=1然后加上2倍第一个方程得2x3-2
写出增广矩阵为273163522493172第3行减去第2行×3,第2行减去第1行×1.5~273160-5.5-2.50.5-50-12-51-10第2行乘以-2,第3行加上第2行~27316011
方程组的系数矩阵为120001矩阵的秩为2,有3个未知数,所以基础解系有3-2=1个向量所以得到基础解系为(-2,1,0)^T
增广矩阵=21-1113-21-3414-35-2r2-r1-r3,r1-2r30-75-950-75-9514-35-2r2-r1,r1*(-1/7),r3-4r101-5/79/7-5/70000
增广矩阵=21-1-11211-11421-22r2-r1,r3-2r121-1-110020000300r2*(1/2).r1+r2,r3-3r2210-110010000000通解为:(0,1,0
这里的自由未知量是x3取x3=0,代入等价方程组得一个特解:(3,-8,0,6)^T对应的齐次线性方程组的等价方程为x1=-x3;x2=2x3;x4=0即令等式右边的常数都为0得到的取x3=1得基础解
这就是本题的解法
系数矩阵A=[1103-1][1-12-10][4-263-4][24-24-7]行初等变换为[1103-1][0-22-41][0-66-90][02-2-2-5]行初等变换为[1103-1][02
增广矩阵=112-1231-4567-7r2-2r1,r3-5r1112-101-3-201-3-2r1-r2,r3-r2105101-3-20000基础解系为:a1=(-5,3,1,0)',a2=(
非齐次的可以写成AX=B的形式,A是个矩阵,B是个向量.可以看到A={k+1,1,1;1,k+1,1;1,1,k+1},而B={0,3,k},根据非齐次方程解的情况,对A的秩进行判断,可以得到k的值有
增广矩阵=11123235755681314r2-2r1,r3-5r1111230133-10133-1r1-r2,r3-r210-2-140133-100000所以方程组的全部解为(4,-1,0,0
因为r(A)=3所以AX=0的基础解系含4-r(A)=1个向量所以2X1-(X2+X3)=(0,1,2,3)^T是AX=0的基础解系.所以AX=b的通解为(1,2,3,4)^T+k(0,1,2,3)^
列增广矩阵,化为阶梯阵,选定基础解系,解出基础解系和特解.