用泰勒级数展开求sin60°的值C语言
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:15:00
(arctanx)'=1/(1+x^2)=1-x^2+x^4-...arctanx=x-x^3/3+x^5/5-x^7/7+.π/4=arctan1=1-1/3+1/5-1/7+...(arcsinx
貌似高数书上也只有两元泰勒级数展开公式吧再问:的却是这样...不过后来自己已经解决了...谢谢你..
再问:给个过程吧。。再答:
该函数在第一象限与第二象限分别都是直线,没有哪一个点具有无穷阶导数,故其泰勒展开是有限项.而泰勒展开的前提是区间内光滑,所以你要的那个展开只能从x=0处分成两段分别表述.即那个展开唯一地只能是:f(x
然后你把图中的x用-x代替即可,容易发现所有的项都变成了负号
不是这样的,有很多方法可以稍微转化一下即可实现计算.比如:对数函数:ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k+..(|x|1时的值了.
参考http://zhidao.baidu.com/question/538153965.html?from=pubpage&msgtype=2
泰勒级数泰勒级数的定义:若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为:f(x)=f(x0)+f`(x0)(x-x0)+f``(x0)(x-x0)&sup
symsx>>taylor((1-2*x+x^3)^0.5-(1-3*x+x^2)^(1/3),x,'ExpansionPoint',0,'order',6)ans=(239*x^5)/72+(119
可以用于估计这个点附近的函数值,分析这个点附近的函数性质.因为往往有的时候函数形式很复杂,甚至还套着积分号什么的,直接分析函数性质很难,所以做泰勒展开,从而变成形式简单的多项式函数.另外也可以用于估计
他是开始设一个函数F(X)=ao+a1x+a2x^2+a3x^3+a4x^4……+anx^n……现在要求出系数a0a1a2a3a4……an……要球a0只要x=0的时候有F(0)=a0求a1只要对F(X
令f(x)=ln(1+x),则f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k;(k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方f(x)=f(x0)+∑f
对的,你先将e^(1/z)按泰勒级数展开,然后将外面的z乘进去即可!e^(1/z)呢,先写出e^x,然后将x换成1/z.再问:z=0无意义。大哥再答:小弟,你那里已经写很明白了再给你找点资料http:
在展开的那一点解析再问:还是不懂再答:呃,就是说,在那一点及其一个领域内可导
如果你有足够耐心,多算几个阶次的导数,代入计算,看看就明白了!前提是别算错!我自己以前把类似展开式算到12阶,只是为了找直观感受!因为前面0比较多,算出十几项,最终排下来也只有三四项.
f(z)=1-2/(z+2)=1-1/[1+(z/2)]=1-1/[1-(-z/2)],根据1/(1-z)=1+z+z^2+...,所以f(z)=z/2-z^2/2^2+z^3/2^3-...+(-1
(1+x)^n=C(n,0)+C(n,1)x+C(n,2)x^2+.+C(n,r)x^r+.+C(n,n-1)x^(n-1)+C(n,n)x^n再问:书上答案是这样的:我没弄明白是怎么得到的
clear;clc; syms x a;m=5;%自己改y=(11/6-3*x+3/2*x^2-1/3*x^3)^af=taylor(y,m+1,x); w=s
Taylor好像只能单变量展开吧,你这个是在x1=0处展开