用泰勒公式计算sin18

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:07:53
用泰勒公式计算sin18
用泰勒公式证明极限题目!

e^x=1+x+x^2/2+o(x^2)sinx=x+o(x^2)所有,e^x-sinx-1=1/2×x^2+o(x^2)√(1-x^2)=1-1/2×x^2+o(x^2),所以1-√(1-x^2)=

用泰勒公式解的一道高数题

要利用泰勒公式展开,SInx=x-x^3/3!+x^5/5!-...+(-1)^n*x^(2n+1)/(2n+1)!+...得到sinx近似等于0.309关键是一个正弦函数的泰勒级数的展开式,记住就行

泰勒公式怎么用?比如sinx

对于函数来说,多项式是最简单得表达形式,泰勒就是将函数用多项式表示!

应用三阶泰勒公式计算sin18的值,怎么求?

sinx的三阶泰勒公式为sinx≈x-x^3/6sin18°=sin(π/10)≈π/10-π^3/6000≈0.309再问:泰勒公式里的x0是什么再答:本题就取0好了再答:计算也是足够精确的再问:误

计算cos36度*sin18度

这道题这么算:因为sin36=2sin18cos18所以cos18=sin36/2sin18所以原式=cos36sin36/2sin18=sin72/4sin18=1/4啦:)

C语言利用泰勒公式,计算sin(x)!急

第十八行改为:\x09\x0918:for(n=1,h=1;n再问:对!这是一个问题,先谢过。不过我照这样改了之后,还是有问题,输入3,正确应是0.4几,我的输出确实-0.3几,愁死了再答:经过调试,

用泰勒公式求函数的极限

√(1+x)=1+1/2x-1/8x^2+1/16x^3-...,√(1+x^2)=1+1/2x^2-1/8x^4+1/16x^6-...cosx=1-x^2/2!+x^4/4!-...e^x=1+x

C语言利用泰勒公式,计算sin(x)!

#include <stdio.h>#include <math.h>int jiecheng(int n){\x09int 

有关泰勒公式中皮亚诺余项的计算问题

O(x^2)+O(X^2)=O(X^N)N看情况而定O(x^2)*O(x^2)=O(x^4)K*O(x^2)=O(x^2)k不等于00(x^N)*O(x^2)=O(x^(2+N))

C语言根据泰勒公式计算sin(x),

//把b定义为浮点型.inti=1,b=1;floatx,a,c;doubles=0;//上面两行改为inti=1;floatx,a,c,b=1.0;doubles=0;再问:我试过之后还是不行mai

sin18度怎用三角恒等变换公式求得?

∵sin36°=cos54°即sin(2×18°)=cos(3×18°)2sin18°cos18°=4(cos18°)^3-3cos18°∵cos18°≠0∴2sin18°=4(cos18°)^2-3

sin(sin x)用泰勒公式展开

首先你要明确泰勒展开在不同的前提设定下可以有不同的展开.就这个函数来说,对sinX可以先展开=sin(sinx)=sinx-(1/3!)(sinx)^3+(1/5!)(sinx)^5-(1/7!)(s

应用3阶泰勒公式求下列各数的近似值,并估计误差.(1)30的三分之一次方(2)sin18度

(1)(30)^1/3=(27+3)^1/3=[27(1+1/9)]^1/3=3(1+1/9)^1/3下面就可以用近似公式(1+x)^n≈1+x/n继续进行计算.误差也可用公式估计(见《高等数学》级数

用三阶泰勒公式计算√e的近似值

根据e的x次方的泰勒公式令x=1/2得到√e的近似值 过程如下图: 

sin18度等于多少 泰勒公式

用初等数学就能解决啊!sin54°=cos36°→3sin18°-4sin³18°=1-2sin²18°→4sin³18°-2sin²18°-3sin18°+1

用三阶泰勒公式 sin18°的近似值 并估计误差

用三阶泰勒公式sin18°的近似值并估计误差18°=18π/180=0.314159265sin18°≈0.314159265-0.314159265³/6=0.314159265-0.00

用3阶泰勒公式求sin18°的近似值并估计误差

sinx=x^5/120-x^3/6+xx=18°=pi/10;sin18°的近似值=x^5/120-x^3/6+x=0.309016994374947sin18°的真值=0.309016994374

泰勒公式求极限,不明白泰勒公式怎么用

因为分母是x^2,所以只展开到2阶导数就够了,到三阶式子肯定含有x^3,由于x趋于0,所以x^3是x^2的高阶无穷小.也就是分母是几次方,一般就展到几阶.书后边写了几个常见的泰勒展开式,e^x的展开也