用比值法判断级数的敛散性求和3^n (2n 1)!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:01:12
用比值法判断级数的敛散性求和3^n (2n 1)!
用比值法判断级数(∞∑n=1 )ntan「π/2^(n+1)」敛散性

这个级数是收敛的.经济数学团队帮你解答.请及时评价.

利用比值判别法判断级数 (n+1)/3^n 的敛散性.n从1到无穷

lim((n+1)+1)/3^(n+1)/((n+1)/3^n)=lim(n+2)/(3(n+1))=1/3

级数敛散性判断求和[(-1)^(n+1)]*(2n-1)!/(2n)!敛散性?如何判断?

∵(2n-1)!/(2n)!>[(2n-1)!/(2n)!]·(2n+1)/(2n+2)=(2n+1)!/(2n+2)!∴(2n-1)!/(2n)!单调递减由斯特林公式n!~[√(2πn)](n/e)

利用比值判别法判别级数∑(n-1)!/3^n的敛散性

un=(n-1)!/3^nun+1=n!/3^(n+1)所以lim(n->∞)un+1/un=lim(n->∞)[n!/3^(n+1)]/(n-1)!/3^n=lim(n->∞)n/3=∞所以发散.

任意项级数中 ,判断敛散性,用比值审敛法,其比值极限为1的话原级数是收敛还是发散呀?定理值给了大

不一定收敛,需要用其它方法判断.经济数学团队帮你解答.请及时评价.谢谢!

高数题:用比值判别法判定级数 n=1∑∞n/3n的敛散性?急,

lim(n->∞)u(n+1)/un=lim(n->∞)[(n+1)/3^(n+1)]/[n/3^n]=1/3

用比值或根值法判断下列级数收敛性.

第一题limun+1/un=lim[(2n+1)/2^(n+1)]/[(2n-1)/2^n]=1/2<1所以收敛第二题limun+1/un=lim[(n+1)(3/4)^(n+1)]/[n(3/4)^

判断级数敛散性,若收敛,求和

1)不收敛,对于任意大的数A,都存在N,使得Sn>A;2)收敛.可以拆开算,二分之一的N次方的和以及三分之一的N次方的和.

用比值法判断级数∞∑n=1 ntan(π/n)敛散性

对级数    ∑(n>=1)ntan(π/n),用不上比值判别法.由于    lim(n→∞)ntan(π/n)=π*lim(n→∞)tan(π/n)/(π/n)=π≠0,据级数收敛的必要条件得知该级

用比值法判断级数(∞∑n=1 )「2*5*••*(3n-1)」/「1*5*•R

由比值判别法,这个级数是收敛的.经济数学团队帮你解答.请及时评价.

用比较判别法判断级数的敛散性

sin1/n²《1/n²√nsin1/n²《√n/n²=1/n^(3/2)由于级数1/n^(3/2)收敛所以原级数收敛

判断级数的敛散性,若级数收敛,求和

1)该级数发散.∵(2n-1)/(2n)当n趋于无穷时等于1.2)该级数收敛.当n趋于无穷时,(1/2)^n、(1/3)^n都趋于0,原式=1/2+(1/2)²+(1/2)³+……

用比值判别法判断级数的敛散性

再问:两道题都是你答的,太厉害了!大神,求认识,求扣扣!再答:额,我一般啊,正好会的→_→再问:求扣扣~~~再答:额我加你吧再问:498065110再答:额,为什么看不到你的号?再答:再发一遍?再问:

判断级数敛散性及求和求数列1/(n+1)(n+3)的前n项和,并且求此数列的级数(n=1时)

收敛liman*n²=1n→∞∑1/(n+1)(n+3)=∑[1/(n+1)-1/(n+3)]/2={[(1/2)-(1/4)]+[(1/3)-(1/5)]+...+[1/(n+1)-1/(

判断n^2ln(1+1/n^2)级数的敛散性,并求和.

应该是发散的.因为n^2ln(1+1/n^2)>1.两边求和,右边趋于无穷.左边必发散.

用比值判别法判定级数的敛散性

比值判别法判定级数的敛散性就是:后项比前项的极限,小于1收敛,大于1发散1.lim(n→+∞)u(n+1)/u(n)=lim(n→+∞)[5^(n+1)/(6^(n+1)-5^(n+1))]/[5^n

用比值审敛法判定下列级数的敛散性

对∑(2^n)/n!则an=(2^n)/n!因为a(n+1)/an=[(2^(n+1))/(n+1)!]/[(2^n)/n!]=2/(n+1)所以lim[a(n+1)/an]=lim[(2^(n+1)

比值收敛法判断级数是否收敛时遇到的问题

此种情况下无法用比值判别法,需要用其他的判别法则.可能有的高数书上会介绍Raabe判别法:un/u(n+1)=1+r/n+小o(1/n),当r>1时级数收敛,当r再问:那,比如n分之一的平方怎么判断,