用柯西积分审敛法判定级数1 n(lnn)^{1 p}lnlnn的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:02:27
答:limn->∞u(n+1)/u(n)=limn->∞[(n+1)tan(π/2^(n+2))]/[ntan(π/2^(n+1))]又当t->0时,tant~t=limn->∞[(n+1)(π/2^
[∞∑n=1]1/[(2n+1)]>[∞∑n=1]1/[(2n+2)]=(1/2)[∞∑n=1]1/[(n+)]=(1/2)[∞∑n=2](1/n)后者为调和级数(是p=1时得p级数),发散,故原级数
后项与前项的比值=1/[(2n+2)(2n+3)]趋于0
级数通项un=ln(n/(n+1))lim(n→无穷)un=lim(n→无穷)ln(n/(n+1))=lim(n→无穷)ln(1/(1+1/n))=0因为sn=ln(1/(n+1))所以S=lim(n
对于n充分大,2^(n^2)=(2^n)^n>=n^n>n!,所以不收敛
利用根式判别法,lim(n→∞)(2^n*n!/n^n)^(1/n)=lim(n→∞)(2*(n!)^(1/n))/n=2/e<1,所以原级数收敛.
只找以充分大的N,使n>N时,一般项单调就行.也就是说x≥3是一个充分条件,对判断级数收敛够用就行.你取x≥2也是可以的,没问题.你心情不好取x≥10000000000,都能得到正确的判定结果.
lim[:(n/2n+1)^n]^(1/n)=lim(n/(2n+1))=1/2
当n趋于无穷大时,1/n趋向于0;sin1/n~1/n;而调和级数1/n发散,所以原级数发散
因为当n趋于无穷时,π/2^n趋于0所以根据等价无穷小的代换:sint〜t(t—>0),有sin[π/(2^n)]〜π/(2^n)(n—>无穷)所以[∞∑n=1]sin[π
解:级数通项un=1/(n+3)当n→无穷时lim(n→无穷)1/(n+3)=0因为sn=∑(k=1到n)(1/(k+3))所以S=lim(n→无穷)Sn=不存在所以该级数发散
an=(n!)^2/[(2n)!]an+1/an=[(n+1)!]^2/[(2n+2)!]/(n!)^2/[(2n)!]=[(n+1)!/n!]^2*[(2n)!/(2n+2)!]=(n+1)^2/(
因为|nsin(nπ/3)]/3^n|无穷大)[(n+1)/3^(n+1)]/[n/3^n]=1/3
级数发散.lim(n→∞)1/√(3n^2+2n)/1/n=lim(n→∞)n/√(3n^2+2n)=lim(n→∞)1/√(3+2/n)=1/√3.∑1/n发散,所以级数∑1/√(3n^2+2n)发
比值判别法lim[u(n+1)/u(n)]=lim[(n+1)/2^(n+1)/(n/2^n)]=1/2<1所以,级数收敛.
亲,记得采纳哦.再问:1/(n+1)*(n+4)呢?再答:一样的,发散。方法同上,乘以n取极限,如果极限>0或为正无穷大,那么就发散。再问:这个应该是收敛吧!1/(n+1)*(n+4)乘上
a^n/(1+a^n)=1/(1+(1/a)^n)所以当|a|
用比值法:limun+1/un=lim[(n+1)^4/(n+1)!]/[n^4/n!]=lim(n+1)^3/n^4=0所以收敛