用柯西判别法判别下列级数的敛散性(b an)^n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:10:59
用柯西判别法判别下列级数的敛散性(b an)^n
1.用比较判别法或其极限形式判别下列级数地收敛性

用比较判别法可做.经济数学团队帮你解答.请及时评价.

判别一个【级数】的收敛性

判断级数是否收敛,首先判断通项是否收敛,但这是必要条件,也就是说通项不收敛,级数一定不收敛,通项收敛但级数不一定收敛.所以先判断通项是否收敛.判断通项是否收敛,一眼就可以看出通项是收敛的,那么只好求级

判别级数的收敛性

1、级数和性质:2个收敛级数,其和收敛.2个等比数列,当然分别收敛.2、根据莱布尼兹交错级数收敛条件:1、An+1小于等于An2、An趋于0,那么此级数收敛.属于条件收敛,因为加绝对值以后,此级数大于

微积分问题,用比较判别法或其极限形式判别下列级数的收敛性.2题哦,

1.sin(π/2^n)0∵∑{1,inf}1/n发散,∴∑{1,inf}1/√n*sin(2/√n)/发散

莱布尼茨判别法能否用于一般级数的敛散性判别

可以使用比较判别法和定义证其他的判别法所规定的条件都是正项级数也有特例:对级数取绝对值这样就变成了正项级数所有的方法都能用只要绝对值收敛那么他就是绝对收敛级数自然也就收敛了

用比值判别法(达朗贝尔判别法)研究下列级数的敛散性,请写在纸上,

1)级数的通项为   u(n)=(1/n)[(3/2)^n],因   |u(n+1)/u(n)|  =[1/(n+1)][(3/2)^(n+1)]/(1/n)[(3/2)^n]  =(3/2)[n/(

用积分判别法讨论下列级数的敛散性

根据积分判别法定义,若f(x)在[1,+∞)是非负递减连续函数,那么级数∑[n=1to+∞]f(n)和积分∫[1,+∞]f(x)dx有相同的敛散性.而∫[1,+∞]x/(x²+1)dx=[l

利用比较判别法或其极限形式,判断下列级数的敛散性

limn→∞un/(n/2^n)=π,因为级数n/2^n收敛,所以原级数收敛.级数n/2^n收敛可以用比值法确定.

利用比较判别法及其极限形式判别下列正向级数的敛散性:∑1/[(ln n)^n]

当n>10时,lnn>2,u(n)=1/(lnn)^n已知∑1/(2^n)收敛,故∑1/[(lnn)^n]收敛.

利用比较判别法或极限形式判别级数的收敛性,请问怎么做的?

lim【(n-1)/(n^2+1)】/【1/n】=1即与1/n同阶,而1/n是发散的,所以发散

判别级数的收敛性  

先求前N项和,再当N趋向于无穷大时求极限,如果极限存在则收敛,极限不存在或为无穷大则发散

用根值法判别下列级数的敛散性

1)∑(n/(2n+1))^n中an=(n/(2n+1))^nan^(1/n)=n/(2n+1)liman^(1/n)=1/2

高等数学判别下列级数的敛散性

£^n=£1,是发散函数,应该是n/2n+1