用数学归纳法证明:根号(n^2+n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:11:06
有条件a1=2,d=2吧,an=2n,S1=a1=1*(1+1),其满足,假设Sj=j^2+j=j(j+1),而a(j+1)=2(j+1),则S(j+1)=Sj+a(j+1)=(j+1)(j+2),满
不能,格式就不说了n=1假设n=k时成立n=k+1时根号((k+1)^2+(k+1))=根号(k^2+k+2(k+1))
An是什么?
n=2时,1+1/√2
假设当n=k时成立,则1+1/根号2+1/根号3+...+1/根号k>根号k那么当n=k+1时,1+1/根号2+1/根号3+...+1/根号k+1/根号(k+1)>根号k+1/根号(k+1)=[根号下
①当n=1时,ln2
首先设g(n)=1/√(n*(n+1)),令f(n)=g(1)+g(2)+g(3)+.+g(n),需要证明:f(n)
1.当n=2时,1+根号2>根号2,显然成立.假设n=k时成立,即1+1/根号2+1/根号3+…+1/根号k>根号k当n=k+1时,左=1+1/根号2+1/根号3+…+1/根号k+1/根号(k+1)>
解,取n=1时,则有:根号下1*2
n=1时,根号2再问:=1*2+根号2*3+...+根号K(K+1)+根号(K+2)(K+1)-1/2(K+1)^2-(K+1)-1/2
证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1
原式等价于n再问:n+1
当n=1时,左边=1
当n=1时,13^(2n)-1=168,成立设当n=k时成立,即13^(2k)-1能够被168整除,则当n=k+1时,有13^(2k+2)-1=13^2kx169-1=13^2kx(168+1)-1=
解题思路:分析:由已知条件得到x2,x3,x4,x5,x6,猜想数列递减,再利用数学归纳法证明。解题过程:
当n=1时,左边=根号2,右边=2,显然左边小于右边.(a)若当n=k(k>=1)时不等式成立,即根号(k^2+k)
说明:此题n为大于等于的整数也是成立的证明:(1)当n=1时,∵4n/(n+1)=4*1/(1+1)=2(2n)!/(n!)^2=(2*1)!/(1!)^2=2∴4n/(n+1)≤(2n)!/(n!)
当n=1时-1=-1假设n=k,k为正整数且>=2时等式成立-1+3-5+...+(-1)^k*(2k-1)=(-1)^k*k当n=k+1时,-1+3-5+...+(-1)^k*(2k-1)+(-1)
1.当n=1时原式=x^2-y^2=(x-y)(x+y)能被x+y整除故命题成立2.假设n=k时命题成立,即x^(2k)-y^(2k)能被x+y整除当n=k+1时x^(2k+2)-y^(2k+2)=x