用夹逼准则证明数列极限limn趋向于无穷大3n次方 n阶乘

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:34:26
用夹逼准则证明数列极限limn趋向于无穷大3n次方 n阶乘
利用单调有界数列必有极限存在准则,证明数列极限存在并求出

数列关系式a(n+1)=√(2+an)数学归纳法假设递增数列即a(n+1)》ana1=√2n=2a2=√(2+√2)a2>a1n=ka(k+1)>akn=k+1a(k+2)=√(2+a(k+1))>a

利用单调有界数列收敛准则证明数列极限存在

归纳法得:xn≥√ax(n+1)-xn=1/2×[a/xn-xn]=1/2×(√a+xn)(√a-xn)/xn≤0所以,xn单调减少所以,xn单调有界,极限存在

利用单调有界必有极限准则证明下列数列的极限存在并求极限,

x(n+1)=√(6+xn)1.x1-x2=10-4>0现设x(n-1)>xnxn-x(n+1)=√(6+x(n-1))-√(6+xn)=(x(n-1)-xn)/√(6+xn)+√(6+x(n-1))

用极限存在准则证明这个数列的极限存在

再问:你把这个一起给讲了吧。。。再答:什么再问:呵呵,,不好意思正在发送。。。

这道题如何证明极限存在?用单调有限数列必有极限准则

再问:如何证明四次根号a是下界呢?诶,高数证明最烦了,一定要证明数列单调且有界

用单调有界准则证明该数列收敛并求极限【第五个】

证明这个数列单调递减且有上界即可.1、用数学归纳法证明这个数列有上界:(1)当n=2时,x2=(1/2)(x1+a/x1)≥√a成立;(2)假设当n=k时,xk≥√a成立,则必有xk>0于是x(k+1

考研高数-利用单调有界准则证明证明数列极限存在

1.a《2X1=√(2+a)《2X(n+1)=√(2+Xn)《√(2+2)=2Xn有上界2X2=√(2+X1)=√(2+√(2+a))》√(2+a)=X1X(n+1)=√(2+Xn)》√(2+Xn-1

如何利用柯西收敛准则证明单调有界数列极限存在

不妨设数列单调增,因为有上界所以有上确界,设为A.则an0,存在aN>A-§,则由an单调增知,对任意的n,m>N,有A>an>A-§,A>am>A-§.又因为从而有|an-am|

单调数列收敛准则证明数列极限存在

有:xn=√(2+x(n-1))∵1由数学归纳法:假设:x(n-1)xn=√(2+x(n-1))xn+1=√(2+xn)∴由单调有界原理:lim(n->∞)xn存在,根据极限保序性,设:lim(n->

利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=

证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】limn【(1/n^2+nπ)+(1/n^2+nπ)+.(1/n^2+nπ)】=limn(n/(n^2+nπ)=

用夹逼准则证明极限

你命题错的吧,令a1=a2=...=an=2,最后得到1,2次方应该是n次才对首先假设ai=max{a1,a2,...,an}先缩n次根号(a1^n+a2^n+...+an^n)>n次根号(0+0+.

利用极限准则证明 

再问:再问:老师,可不可以在帮我解决下再答:你的题目有问题:再问:哦哦,对括号前还有个n,再问:谢谢老师再答:举手之劳再问:老师,这个题怎么做。这种题的分段点怎么确定呢??再问:再问:再问:老师你好请

使用极限存在准则,证明

写下我的邀请码4686002帮帮忙