用向量证明三角形三中线共点,且该点到各顶点的距离等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:12:12
设BC中点为D,AC中点为E,AD交BE于O,连接CO延长交AB于F向量AD=1/2(AC+AB)OD=1/3AD=1/6(AC+AB)=1/6(AC+CB-CA)CO=CD+DO=1/2CB+1/6
证明:∵△ABC中,AF,BE,CD分别是BC,AC,AB边上的中线,∴AF,CD,相交于一点G,且BG∶GE=2∶1F,E分别是BC,AC的中点,所以EF=AD,所以,四边形AEFD为平行四边形,∴
设两条中线的交点为O,按一定方向设三角形三边的向量为向量a,b,c,三边中点为D,E,F.假如说取的两条中线是AD和BE,那么,就用a,b,c表示向量CO和OF,就可以发现向量CO和OF平行,因为它们
是不是这个啊
设AD,BE,CF是中线.AD,BE交于K.CF,BE交于H.AB=c,AC=b.BK=tBE=t(b/2-c).AK=AB+BK=c+t(b/2-c)=tb/2+(1-t)cAK=sAD=s(b+c
问题即为:已知△ABC中各边中线分别为AD、BE、CF,AD交BE于点G求证:G点在直线CF上.析:这就转化为证明两个向量共线的问题,(省略向量符号)即CG=λCF.下面就是简单的向量转化了.PS:在
利用塞瓦定理假设三角形ABC中线AD,BE交点P,连接CP延长交AB与F塞瓦定理AF/FB*BD/DC*CE/EA=1所以:AF/FB=1所以:CF为AB边中线所以:三角形的三条中线交于一点延长AD到
设BC中点为D,AC中点为E,AD交BE于O,连接CO延长交AB于F向量AD=1/2(AC+AB)OD=1/3AD=1/6(AC+AB)=1/6(AC+CB-CA)CO=CD+DO=1/2CB+1/6
D、E是中点,DE=1/2BC,且DE∥BCDE:BC=AE:AB=1/2,DE:BC=EO:CO=1/2EM:BN=AE:AB=1/2,EM:CN=EO:CO=1/2EM:BN=EM:CNBN=CN
网上有详细的答案http://jylicai.com/netteach/cw04-05/ja/g354sxb516aa09.doc【典型例题精讲】例2
设向量AB=a,向量AC=b,向量AM=c向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形则向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c平方(1)
下面提供您2种证法,请君自便,(向量表示符号弄不出,可能给您带来阅读等方面不便,在此深表歉意.)证法1先做图,做出过B,C的两条中线,分别交AC于M,交AB于N,所以M,N是AC,AB的中点.连接MN
先假设两条中线AD,BE交与P点连接CP,取AB中点F连接PFPA+PC=2PE=BPPB+PC=2PD=APPA+PB=2PF三式相加2PA+2PB+2PC=BP+AP+2PF3PA+3PB+2PC
AD、BE、CF是△ABC的三条中线,用向量法求证:AD、BE、CF共点.[证明]令BE、CF相交于O,且BO=mOE、CO=nOF,其中m、n为非零实数.则:向量BO=m向量OE、向量CO=n向量O
你已经怎明了,AD,BE的交点G1,把AD分成2∶1.从而AD.CF的交点G2也把AD分成2∶1.[可以不必再证.下面*是证明],∴G1,G2重合.三个中线交于一点.*AG2=sAD=s(a-b/2)
设三角形三个点分别为点A(Xa,Ya),点B(Xb,Yb),点C(Xc,Yc).那么线段AB的中点M为((Xa+Xb)/2,(Ya+Yb)/2),并且可求出直线CM的方程(点M,点C已经给出,请自己写
先设两条中线AD,BE交于一点G,连接CG利用三角形法则CG=CA+AG=CA+2/3AD=.=1/3(CA+CB)取AB中点F,AF=1/2(CA+CB),所以CG平行于AF(以上字母都要加箭头)
三条线交于一点,这个点叫中点
垂心已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F,求证:CF⊥AB证明:连接DE∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EA
设三角形是ABC,三个中线为AD,BE,CF,那么,有向量AD=1/2*(向量AC+向量AB),向量BE=1/2*(向量BA+向量BC),向量CF=1/2*(向量CA+向量CB).由此,向量AD+向量