用spss做回归分析预测
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:36:01
很简单,用前进、后退或逐步法都行,一般用逐步法然后看整个模型是否有统计学意义,就是有回归和残差那项若有意义(P小于0.05)则继续看每个参数的P值若P值大于0.05,剔除~最后得方程模型当然还需要注意
因为你不会spss操作,但是在那里乱在点我经常帮别人做这类的数据统计分析的再问:会不会是数据有问题造成的呢
要做的内容很多了,除了正态性、残差分布情况,还要计算多重共线性,然后得到模型,可能还要做预测我替别人做这类的数据分析蛮多的
给你举个例子来说明吧左表的数据是对数年来国内旅游者的旅游花费与自由自配收入、闲暇时间的调查数据.(数据是假设的)目的:试进行多重回归分析,求出回归方程式,来年若闲暇时间没有变化,但自由自配收入较之今年
这个可以在非线性回归中直接做,如果你不会,可以先将这些非线性模型转换成线性的再进行回归.比如第二个模型,你先将ln(8-Q)求出来,记作Y,然后再用Y=-kt进行线性回归,不知道你是否明白我的意思,这
亲,你说清楚点,什么叫每个变量都是矩阵形式,是说一时间为维度吗?用spss是可以做回归的,包括一元和多元回归.
你这个可以用sem来做普通ols做不了的另外,你要搞懂什么叫做多重回归,什么叫做多元回归,我经常做这类的数据统计分析
用福利的原始分数作为自变量进行分析是完全可以的.这个自变量的数据类型属于等距变量,即没有绝对零点但是有相等单位的数据.这种数据类型符合回归分析的数据要求.同时,如果觉得原始分数的代表性不是很强,也可以
你可以尝试着先绘制下散点图看看会不会用其他曲线拟合的效果会更好,很多时候数据用线性和一些非线性拟合后都会有显著效果,但是不一定是最佳的,所以需要判断自变量和因变量之间关系是否符合线性.如果仍然是符合线
方偏小,理论上是不合理的,但很难说是否可行,因为这不是检验回归方程的唯一标准,建议结合F检验和T检验来确定.
有点低.你有几个变量再问:四个自变量,两个控制变量,两个因变量。拟合度和变量个数有关系?再答:如果是管理学的实证分析拟合度不是最重要的问题再问:这样啊,我是学管理的,顺便问一下,用spss做回归分析的
从你的回归分析系数的假设检验看出所以系数在0.05的检验水准下都没有统计学意义所以回归方程拟合的效果不好
analyse——generallinearmodel——univariate,选择plot,将要分析的两个要素,自变量,因变量分别ADD到横纵坐标中,就可以做交互作用出散点图.
这种情况很正常知道吗因为在计算相关系数时,得到相关系数0.21,说明相关性不是很强,但通过检验了,说明在总体中AB也存在这种相关关系而回归分析是,我想你应该是建立一元线性回归吧,但没有通过检验,这种一
依次点击analyze-regression-linear,选择好自变量independent和因变量dependent,点击OK.输出结果……
把问题摆出来,数据变量,回归模型等等列出来,这样才看得清楚.(百度南心网,专业为您解决SPSS统计分析问题)
abcde是一个问题的五个选项?是分类变量还是连续性的变量如果是分类变量需要转变成哑变量才能回归,如果是连续性的变量可以直接纳入回归中另外回归分析要看散点图呈现线性关系可以用线性回归,对因变量要求为连
自变量的地方选入多个变量就可以了.
表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十.很高了.表二的sig是指你的回归可不可信,你的sig是0.00
QQ我,进我空间就知道了