用3阶泰勒公式求3√30
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:01:01
你需要拉格朗日余项公式再答:再问:就是一下糊涂了那个“西塔x”怎么求的了!!谢谢啦,已经懂了~
估算30的立方根是吗? 过程如下图:
sinx=x-x^3/3!+x^5/5!-x^7/7!+.f(x)=x^4-x^6/3!+x^8/5!-x^10/7!+...f(x)的6阶导数=-6!/3!=-120
这个问题说的不够准确,应该说明近似到什么程度.也就是说指明近似到小数点后几位,即10的负几次方.方法:先把它转化成以e为底的指数形式,因为e^x这个泰勒公式比较好用.
只要展开到出现对于整个式子来说是无穷小的那一项的前一项就可以了再问:能不能举几个例子再答:http://zhidao.baidu.com/link?url=2j4ZdNOn-mGKXTV7k5LFPd
用泰勒公式变形的麦克劳林公式,套进去解嘛
cosx-e^(x2)是二阶无穷小,sinx^2是二阶无穷小,这样分母是四阶无穷小,分子也要展开到四阶.cosx=1-x^2/2+o(x^2)e^(x^2)=1+x^2+o(x^2)√(1+x^2)=
√(1+x)=1+1/2x-1/8x^2+1/16x^3-...,√(1+x^2)=1+1/2x^2-1/8x^4+1/16x^6-...cosx=1-x^2/2!+x^4/4!-...e^x=1+x
当x很小时,(1+x)^(1/3)≈1+x/3³√30=³√(27×10/9)=3×(1+1/9)^(1/3)≈3×(1+1/27)≈3.11再答: 再答:
(30)^(1/3)=(3^3+3)^(1/3)=3*(1+1/9)^(1/3)再答:求采纳再问:真不知道哪像泰勒展开式。再问:那40^(1/3)呢再问:不过谢谢你,我知道刚才为什么没做出来了,忽略了
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn(x)f(x)的
sinx=x^5/120-x^3/6+xx=18°=pi/10;sin18°的近似值=x^5/120-x^3/6+x=0.309016994374947sin18°的真值=0.309016994374
因为分母是x^2,所以只展开到2阶导数就够了,到三阶式子肯定含有x^3,由于x趋于0,所以x^3是x^2的高阶无穷小.也就是分母是几次方,一般就展到几阶.书后边写了几个常见的泰勒展开式,e^x的展开也
再问:那个答案是1/6再问:求解'~再答:分子是1/24-1/8.刚才把算成+了再问:原来算错了,好马虎呦~再问:再问:那个,大神帮帮我再问:第二大题的第二小题^_^
(1+x)^n=C(n,0)+C(n,1)x+C(n,2)x^2+.+C(n,r)x^r+.+C(n,n-1)x^(n-1)+C(n,n)x^n再问:书上答案是这样的:我没弄明白是怎么得到的
在泰勒公式里,x的适合范围是-1越接近两个边缘多项式的值自然和原式计算的值相差的较大.试把x值放接近0,答案会比较准确.再问:好像同济版六上面没说x的范围啊,只是提供误差计算范围。但是展开后多项式的值