理想气体等压膨胀,体积变为原来的三倍,温度如何改变
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:59:00
首先由p(1)v(1)=nRT(1),p(2)v(2)=nRT(2),p(1)=p(2),v(2)=2v(1),得到T(2)=2T(1).由于是在等压条件下对外做功,则W=p(外)v(2-1)=p(1
理想气体真空膨胀,又不会对环境产生什么影响.所以环境熵变为0另外,理想气体真空膨胀也不是准静态过程.为什么要用这个式子呢用式子之前先1、搞清楚你的研究对象2、弄清楚式子的适用范围
A氢气是双原子分子,氦气是单原子分子,在温度变化相同的情况下,氢气改变的内能多.由于对外做功=PV,相同.又PV=nRT,故温度改变相同,所以,氢气改变的内能多.根据热力学第一定律,氢气吸收的热量多.
理想气体的内能(U)和焓(H)只是温度的函数,也就是二者只与温度有关,温度变化则内能和焓发生变化,温度不变二者也不变.所以等温膨胀时,由于温度不变,因此焓和内能也不变,即焓变和内能变化均为零.
答案选第二个,△s=Rln10=8.31*2.3=19.1J*K-1再问:可是这个公式不是只适用于等温可逆物理变化熵变吗如果设计成可逆做的话,前后的压力和温度都发生了改变啊!再答:在理想气体的熵变中是
第一题,一楼正解.第二题,一楼错误.现将熵变计算如下:1、求混合后的平衡温度T将两个液体作为一个系统,并假定cp不变,液体膨胀系数也与温度无关,因而有Q=0与W=0于是Mcp(T-T1)+Mcp(T-
定量证明的具体算了.下面做定性分析.画P-V图,等压是一条直线,等温是双曲线,绝热是曲线,比等温陡.在图上看,等压在上,等温在中,绝热在下.曲线下围得面积就是它们对外界做的功.面积最大的等压,等温居中
根据热力学第一定律,吸收的热量等于内能的增加与对外做功的和,等温膨胀内能不变,等压过程膨胀温度要升高内能增加,所以等压过程内能增加多;等温膨胀压强要减小,对外做功等于压强乘以体积变化,本题体积变化相同
由PV/T=C(P是压强,V是体积,T是温度,C是一个常量)可以知道,当P不变的时候,V增大,则温度升高,Q3>0当温度不变的时候,内能不变,Q4=0,Q3>Q4温度不变的时候,V增大,则P减小,膨胀
等压,压强不变,对外做功为压强×变化体积
1.气体对外做的功=∫PdV等压过程压强P是最大的,其他的P都是逐渐减小的!所以:气体对外做功最大是:温度升得最高,所以:气体吸热最多的也是:2.M=dω/dt-kω=dω/dt-kdt=1/ωdω积
当然是等压膨胀了.这个过程要吸热,温度升高,且吸收的热量要大于膨胀对外做的功.
单分子原子的定容热容Cv=(3/2)R,定压热容Cp=Cv+R=(5/2)R,gama=Cp/Cv=5/3由热力学第一定律内能的增量deltaE=吸收的热量Q-对外做的功W初始状态:PaVa=nRTa
摩尔数,可以通过初态算出来啊再问:可以解答这道题吗?再答:第一步,做的功=pdv积分=P0(V1-V0)=P0(T1-T0)V0/T0第二步,对绝热变化,pv^gamma=常数对于双原子分子,gamm
我们先看气体的内能,气体的内能本由分子间平均动能和势能共同决定,这里已经指出是理想气体,不考虑分子间势能,故只与分子间平均动能有关.而这个动能随温度升高而增大.此处等压膨胀,根据盖-吕萨克定律,压强不
1mol理想气体在标准状态下体积22.4L=0.0224m³,等压膨胀了20%做功W=p*ΔV=1.013×10^5pa×0.0224m³×20%=453.8焦耳
Q=-W=pdv=nrtLNV=8.314*298*Ln10ΔS=Q/t,ΔG=0-Q=-QΔF是赫牳赫兹能吗,我们数用A表示,这个题等于W了
如果是均匀变化的话,设变化率为a,则一般有边长(半径)变化率:面积变化率:体积变化率=a:a²:a³由题可得a=√2所以体积变为原来的2√2倍.
4兀R^2球的变面积公式4/3兀R^3是体积公式联立求解答案是2√2倍再问:���岽����ʲô再答:������Ϊ4再答:���R1�������V1ͬ�?����Ϊ8ʱ���R2�ó�V2V2/V