球心不在原点的球面闭区域求三重积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:02:58
球心不在原点的球面闭区域求三重积分
【解析几何基础题】求下列球面的球心与半径(回答的亲请写出详细过程,书面形式最好!)

(1)(x-3)²+(y+4)²+(z+1)²=16球心坐标为(3,-4,-1),半径为4(2)(x+1)²+(y-2)²+z²=9球心坐标

三重积分球面坐标系的问题

这个题目改条件后不适合用球面积分做,因为你用球面积分是为了简化问题,但是这个地方根本不可能简化,所以不要用球面积分.不过也不能完全这么说,因为你无法确定a的值和1的大小关系,如果a小于1,那么这个题目

证明:如果一个球面的球心坐标(x0,y0,z0)中至少有一个是无理数,则此球面上任何四个不在同一平面上的点中至多有三个点

球面的标准方程为:(x−x0)2+(y−y0)2+(z−z0)2=r2.利用反证法进行证明.假设结论不成立,即:球面上存在四个不在同一平面上的点Pi(xi,yi,zi)(i=1,2,3,4),其坐标都

半径为R的均匀带电球面,总电量为Q在球面上挖去小块的面积S(连同电荷)求球心处电场电场强度大小

当没有挖去小块的面积S时,球心处的电场强度为0(这一点可以用微元法证明),现挖去小块的面积S(可视为点电荷),挖去的电荷量为QS/(4πR²),在球心处产生的电场强度为kQS/(4πR^4)

求平面y=o,y=kx(k>0),z=0,以及球心在原点,半径为R的上半球面所围成的第一卦限内立体的体积

半径为R的球在第一卦限内的体积为πRRR/6,设α为平面y=0和平面y=kx所成的两面角,则k=tanα,α=arctank,故所求体积为S=πRRR/6×(α÷π/2)=πRRR/6×(2α/π)=

半径为R的均匀带电球面的电势为U,圆球绕其直径以角速度W转动,求球心处的磁感应强度?

设球带电量为q,由球内电势公式得kq/r=u,所以求带电量q=ru/k,所以球带电的面密度σ=q/s=q/(4πr^2)=ru/k(4πr^2)在球面上选一个平行于水平面小环带,半径a=r*cosθ(

关于高数三重积分∫∫∫dxdydz这样能不能计算出一个球心在原点半径为1的球的体积如果用截图法计算出来是∫-1 1∏(1

被积分函数1-z^2是个偶函数,积分域又是(-1,1)的对称域,所以积分必定不是零啊.∫-11∏(1-z^2)dz=2∫01∏(1-z^2)dz=4∏/3∫∫∫dxdydz可以用来计算体积,本来就是体

关于积分区域Ω为椭球的三重积分

Ω为(x/a)²+(y/b)²+(z/c)²≤R²的形式.方法一:将椭圆域Ω转变为圆域Ω''作代换:u=x/a、v=y/b、w=z/c圆域Ω'':u²

高数球面坐标系下三重积分的计算,

.好久不做,我来温习一下,稍后上图.再问:嗯嗯再答:再答:待续再答:

球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分

∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5

三重积分数学题{有图},求详解.是不是需要用到积分区域和被积函数的对称性解三重积分?

嗯,是的,比如说第一题把(x+y+z)^2展开,得到的xy,xz,yz,都是关于积分区域对称的,还要根据积分函数的奇偶性来判断再问:求详解。。。怎么判断。。。再答:你也是考研的吧?我是考研的,有李永乐

球一道数学题,在球内有相距1cm的两个平行截面,面积分别为5π和8π,球心不在截面内,求球面的面积

两个截面一定是圆则R1=根号5R2=根号8设圆心到第二个圆的距离是D球半径是R那么R^2-D^2=8R^2-(D+1)^2=5则2D+1=3D=1;R=3则V=4/3*pai*27=36PAI

三重积分球面坐标中R的范围怎么确定?

你是不是重复提问了?我已经回答了.1:在整个球域内R的积分段[0,R],在做笛卡尔坐标转换为极坐标时,要注意被积函数多出来的部分.确定球投影的平面,再利用极坐标将x,y分别用theta,r,代换.2:

三重积分投影区域如何求

空间坐标系作图法

高数课本里有二重积分的换元法,不知有没有第一类曲面积分的换元法 比如一个球心不在原点的球面能类似的变

一般没有因为曲面积分大都是化为二重积分,你只要能化为二重积分,就可以利用二重积分的换元法了.

空间直角坐标系球心在原点的球面与一平面的交线的圆的半径如何计算?请说出具体过程及空间立体说明.

勾股定理假设与球面相交的平面是Ax+By+Cz+D=0,球心即原点(0,0,0)到该平面的距离d=|D|/√(A^2+B^2+C^2)球体的半径如果已知为R,则所要求的交线的圆的半径为r=√(d^2+

OpenGL画球时如何使球心不在坐标原点

可以使用glTranslatef这个函数实现.例子书上应该比较多.给一个轮廓:glPushMatrix();glTranslatef(x,y,z);.//你要画的球或者其它的图像;如:glBegin(