独立期望方差相加
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:18:52
D(xy)=E(X^2*Y^2)-[E(XY)]^2=E(X^2)E(Y^2)-[E(X)E(Y)]^2
期望:可以看做是平均值,方差:用来度量随机变量和其数学期望(即均值)之间的偏离程度.
不一定,题目中不是没有说同分布吗?随便构造就行了比如X1服从入=1泊松,E(X1)=D(X1)=1,让X2服从N(1,1),不就有相同期望和方差了嘛
E(X)=E(X1+X2+X3)=E(X1)+E(X2)+E(X3)=0,同理E(Y)=0E(XY)=E(X2^2)+E(X3^2)=2B^2Cov(X,Y)=E(XY)-E(X)*E(Y)=2B^2
令U=X-Y,则U~N(0,1)则|U|=|X-Y|E|U|=0,(根据对称区间被积函数为偶函数)D|U|=E〔|U|^2〕-〔E|U|〕^2=0(同理E|U|=0)
常数的平方还是常数,期望类似平均值,那C平方的期望不就是c平方?这里把c看成变量是为了后面求导,你可以把c看成变换的常数就好理解了再问:这个证发是先把c看成变量的。这道题,你有别的方法吗再答:可以作差
解题思路:见解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php
你现在是上高中吗?这些可能你们还没学过,反正我是到大学才学的,X1是均匀分布,X2是正态分布,X3是指数分布,它们的期望都可由参数直接读出,最后的结果则直接由期望的线性性质求出.
由于X与Y独立,故期望E(Z)=E(XY)=E(X)E(Y)=μ1μ2;方差D(Z)=D(XY)=E(XY*XY)-E(XY)*E(XY);E(XY*XY)=E(X^2*Y^2),X^2与Y^2也独立
如果方差不存在怎么办?同一分布是指同一个分布,不是同一类分布
E(x+y)=Ex+Ey=1/5+3/5=0.8D(x+y)=Dx+Dy+cov(xgy)=1/25+9/25+cov(xrvzdy)需要知道xky的协方差2若相互独立
相等的,根据同分布就可知道
期望EX=10*0.5+9*0.3+8*0.1+7*0.05+6*0.05=5+2.7+0.8+0.35+0.3=9.15(变量x的取值乘以各自取值的概率之和)方差DX.在计算方差之前先求平均值y=(
独立同分布是说随机变量之间相互独立,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.
是样本均值与方差独立吧?设总体X服从正态分布N(μ,σ^2).X1,X2,...,Xn是来自这个正态总体的一个简单随机样本,则样本均值与样本方差是相互独立的.
解题思路:记住期望(平均数)公式、方差公式,并会用它们来计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
若两个随机变量X和Y相互独立,那么两个随机变量的和的方差等于各自方差的和: &nb
是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).
同分布意味着期望和方差相同,但反过来不成立.毕竟期望和方差只是一阶矩和二阶矩,还有更高阶的矩存在.因此同分布事实上是很强的条件,更不必说是独立了