独立变量X,Y,概率密度分别为p(x)和P(y),则z=x y的概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:31:04
首先分别计算x和y的边际密度函数,如下:x的边际密度函数:x<0时,边际密度为0,x>0时,如下: 同理可得y的边际密度函数:y<0时,边际密度为0,y>0时,如下:
可以利用指数分布的特征,得到D(X)=1/4从原始理论推导的话,D(X)算起来有些麻烦E(X)=∫(0~无穷)x2e^(-2x)dx=1/2E(Y)=∫(0~1/4)4xdx=2x²](0~
D.fx(x)fy(y)再问:能不能解释一下?再答:随机变量X和Y相互独立
fz=z^2(0
是这样的:P{X+Y
(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4
因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0
答案是2/(Y*Y*Y)求函数的概率密度有一个公式,如果Y(X)的导数是非0的,则可以用这个公式.这个题Y关于X的导数是大于0的,所以:(1)求Y关于X的函数的反函数,此题Y的反函数就是:Y的对数;(
30fx(x)=∫(0~)f(x,y)dy=1fy(y)=∫(0~1)f(x,y)dx=e^(-y/2)/2fx(x)fy(y)=f(x,y)所以互相独立311)x>=1时Fx(x)=∫(1~x)1/
1fx=int(-oo,+oo)f(x,y)dy=1fy=int(-oo,+oo)f(x,y)dx=0.5e^(-0.5y)f(x,y)=fx*fy,独立20-8上的均匀分布EX=int(0,8)x/
望采纳.再问:答案是分段的1-e^-z,0
D(X+2Y)=D(x)+D(2y)+2cov(x,y)独立性知cov(x,y)=0指数分布(2)因此D(x)=1/4,均匀分布(0,4)因此D(y)=4x4/12因此D(x)+D(2y)=D(x)+
f(x,y)=1/4*exp{-x-y/4}(x>0,y>0)f(x,y)=0(其他)
回答:fz(z)=fx*fy=∫{-∞,∞}fx(z-y)fy(y)dy=∫{-∞,∞}fx(x)fy(z-x)dx其中,fx*fy表示fx(x)的fy(y)的卷积.
fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出