狄利克雷在0点连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:01:27
连续是很容易看出的z'(x)(0,0)=√(Δ^2x)/Δx如果Δx>0那么z'(x)(0,0)=1如果Δx所以在(0,0)处对x的偏导数不存在,所以不可微分.
求一阶偏微分df(x,y)/dx,df(x,y)/dy对于点t(x0,y0)验证df(x,y)/dx|x=x0-是否等于df(x,y)/dx|x=x0+对y也同样
1.连续必可导可导不一定连续2.证明连续只需要证明在这一点的左右极限相等并且等于函数值3.证明可导只需要证明在这一点左右极限相等即可回答者:charleswlb-举人五级5-515:53误人子弟啊!1
一般的函数在某点极限存在,该点确实不一定有定义,但是导函数有一些不同于一般函数的性质(这就是说不是随便给一个函数,它就能成为某个初等函数的导函数的).你所说其实是导函数的一个重要性质,称为导数极限定理
哪一题?再问:11谢谢再答:lim(x→0-)f(x)=lim(x→0-)ln(1+x)=0lim(x→0+)f(x)=lim(x→0+)e^(1/(x-1))=e^(-1)=1/elim(x→0-)
这个不一定.要看左右极限是不是相等
二元函数连续跟左右极限有半毛钱关系…二元函数连续是用重极限定义的,讨论偏导连续跟重极限有半毛钱关系.判断偏导存在用的是导数定义式多元函数在某点偏导数存在,啥结果也得不出来…某点偏导存在与极限存或连续在
不连续.在x从0左侧趋近于0的时候1/x趋近于负无穷,从右侧时趋近于正无穷,两侧极限并不相等,所以并不连续.即在0点间断且不连续.
可导一定连续,连续一定有极限,有极限不一定连续,连续不一定可导,可微就是可导,可导就是可微,极值点一定是驻点,驻点不一定是极值点,拐点一定是驻点,驻点不一定是拐点
意思差不多吧.不过是曲面上的连续和曲线上的连续之分.
(1)对于任意正数a,只要|x-0|=|x|
在那里有解且在那里左右都趋向于那个解再问:那和“在X0附近有定义”的区别是什么再答:有定义就是有解可以不连续但是连续就会有定义
当x和y都趋向于0时,sin[1/(x^2+y^2)]虽然不收敛,但是个有限值,他乘以0,仍然是0所以lim(x->0,y->0)y/(x^2+1)sin[1/(x^2+y^2)]={lim(x->0
证明啥?啊1111111111111111再问:问题补充:证明f(x)的二阶导数有界再答:证明不了的,举个例子,x^4的2阶导数是12x^2,在0处连续,但是无界
有连续导数指的是导函数连续.
因为可能在此处其切线斜率不存在或无切线.函数在一点可导,当且仅当其左右导数存在且相等,如果不符合此条件,即便是连续的,在某点也可能是不可导的.
可以这样理函数的右端点x.只有可能趋于x.负,也就是说在右端点上只有左极限的,故称为左连续.同理左端点的只存在右极限所以就说:函数在右端点连续是指左连续,在左端点连续是指右连续
原因很简单根本不用图解函数在闭区间上连续当然是在右端点连续是指左连续,函数在右端点右边没意义了~~~~
∵右极限f(0+0)=lim(x->0+)(x²)=0左极限f(0-0)=lim(x->0-)(x-1)=-1∴f(0+0)≠f(0-0)故函数f(x)在点x=0处不连续,点x=0属于第一类
连续就是能连上.数学上就是某个函数,一直趋近某个点的时候,最后会等于它在这个点的值.可以反面说明:比如函数分2段,一段在[1,2)上等于1,一段在[2,3]上等于2那么f(2)=2,但是limf(x)