狄利克雷在0点连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:01:27
狄利克雷在0点连续
高数选择题求教函数z=(x^2+y^2)^1/2在(0,0)点()A 连续不可导B 可导不连续C可导连续不可微D 全微分

连续是很容易看出的z'(x)(0,0)=√(Δ^2x)/Δx如果Δx>0那么z'(x)(0,0)=1如果Δx所以在(0,0)处对x的偏导数不存在,所以不可微分.

如何判断二元函数在一个点是否连续?

求一阶偏微分df(x,y)/dx,df(x,y)/dy对于点t(x0,y0)验证df(x,y)/dx|x=x0-是否等于df(x,y)/dx|x=x0+对y也同样

如何证明函数在一个点连续不连续 可导不可导

1.连续必可导可导不一定连续2.证明连续只需要证明在这一点的左右极限相等并且等于函数值3.证明可导只需要证明在这一点左右极限相等即可回答者:charleswlb-举人五级5-515:53误人子弟啊!1

导函数在某点极限存在,且函数连续.

一般的函数在某点极限存在,该点确实不一定有定义,但是导函数有一些不同于一般函数的性质(这就是说不是随便给一个函数,它就能成为某个初等函数的导函数的).你所说其实是导函数的一个重要性质,称为导数极限定理

为什么两种方法判断某点是连续还是间断结论不一样呢?某点极限等于该点的函数值,可以推出在该点连续吧,如图,X=0这个点是连

哪一题?再问:11谢谢再答:lim(x→0-)f(x)=lim(x→0-)ln(1+x)=0lim(x→0+)f(x)=lim(x→0+)e^(1/(x-1))=e^(-1)=1/elim(x→0-)

只要函数连续,在某一点的极限一定存在?

这个不一定.要看左右极限是不是相等

请问函数的偏导数在某点连续是什么意思?

二元函数连续跟左右极限有半毛钱关系…二元函数连续是用重极限定义的,讨论偏导连续跟重极限有半毛钱关系.判断偏导存在用的是导数定义式多元函数在某点偏导数存在,啥结果也得不出来…某点偏导存在与极限存或连续在

1/x在0点连续吗

不连续.在x从0左侧趋近于0的时候1/x趋近于负无穷,从右侧时趋近于正无穷,两侧极限并不相等,所以并不连续.即在0点间断且不连续.

连续函数在连续点不一定有极限 这句话对吗?

可导一定连续,连续一定有极限,有极限不一定连续,连续不一定可导,可微就是可导,可导就是可微,极值点一定是驻点,驻点不一定是极值点,拐点一定是驻点,驻点不一定是拐点

二元函数一阶偏导在某点连续是什么意思?与一元函数导数在某点连续意思相同么?

意思差不多吧.不过是曲面上的连续和曲线上的连续之分.

当函数f(x)在点X0处连续时... “连续”是什么意思?

在那里有解且在那里左右都趋向于那个解再问:那和“在X0附近有定义”的区别是什么再答:有定义就是有解可以不连续但是连续就会有定义

f(x,y)在点(0,0)处 A无定义 B极限不存在 C极限存在但不连续 D连续

当x和y都趋向于0时,sin[1/(x^2+y^2)]虽然不收敛,但是个有限值,他乘以0,仍然是0所以lim(x->0,y->0)y/(x^2+1)sin[1/(x^2+y^2)]={lim(x->0

f(x)在点x=0处具有连续的二阶导数,证明f

证明啥?啊1111111111111111再问:问题补充:证明f(x)的二阶导数有界再答:证明不了的,举个例子,x^4的2阶导数是12x^2,在0处连续,但是无界

f(x)在点C处有连续导数

有连续导数指的是导函数连续.

高数中为什么函数在点x连续未必可导

因为可能在此处其切线斜率不存在或无切线.函数在一点可导,当且仅当其左右导数存在且相等,如果不符合此条件,即便是连续的,在某点也可能是不可导的.

高等数学(同济五版)上册第一章,“函数在右端点连续是指左连续,在左端点连续是指右连续”是什么意思

可以这样理函数的右端点x.只有可能趋于x.负,也就是说在右端点上只有左极限的,故称为左连续.同理左端点的只存在右极限所以就说:函数在右端点连续是指左连续,在左端点连续是指右连续

函数在某区间连续,如果区间包括端点,为什么说在右端点连续是指左连续?在左端点是右连续?

原因很简单根本不用图解函数在闭区间上连续当然是在右端点连续是指左连续,函数在右端点右边没意义了~~~~

高数函数连续习题讨论函数f(x)=x-1(x≤ 0), x^2(x>0) 在点x=0处是否连续?若不连续,判断间断点类型

∵右极限f(0+0)=lim(x->0+)(x²)=0左极限f(0-0)=lim(x->0-)(x-1)=-1∴f(0+0)≠f(0-0)故函数f(x)在点x=0处不连续,点x=0属于第一类

某点的极限等于该点的函数值,在该点就连续是什么意思//x=0是极限值?

连续就是能连上.数学上就是某个函数,一直趋近某个点的时候,最后会等于它在这个点的值.可以反面说明:比如函数分2段,一段在[1,2)上等于1,一段在[2,3]上等于2那么f(2)=2,但是limf(x)