特征多项式的n重根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:32:40
特征多项式和极小多项式的根在不计重数的意义下完全一样,不可能出现特征多项式的一次因子在极小多项式里不出现的情况
就是要证明|λE-AB|=|λE-BA|.考虑分块矩阵P=E0-AE与分块矩阵Q=λEBλAλE可算得PQ=λEB0λE-AB有λ^n·|λE-AB|=|λE|·|λE-AB|=|PQ|=|P|·|Q
只需注意到特征多项式即为该蓝布他矩阵的n阶行列式因子Dn,而Dn=d1d2……dn其中di为i阶不变因子
因为矩阵A的特征多项式就是f(x)=|xI-A|.其中||是行列式,而I是与A同阶的单位阵.现在设矩阵B与A相似,即存在同阶可逆矩阵T,使得B=T^(-1)AT.这里T^(-1)是矩阵T的逆.根据特征
抄错题了吧?递推公式应该是A_{n+3}+4A_{n+2}+5A_{n+1}+2A_n=0吧?不然原特征方程没有整数解,也没有重根.如果是这样,那么特征方程为x^3+4x^2+5x+2=0,解方程得x
显然不一定,比如说零矩阵满足A(A-I)(A-2I)(A-3I)=0,但x(x-1)(x-2)(x-3)当然不是零矩阵的极小多项式
a=c=2b=-3软木他=1这个主要是用到A的伴随的特征值与A的特征值的关系;如果A的特征值是&那么A的伴随的特征值是IAI/&.特征值对应的特征向量两者都一样.再利用特征值的定义配合A的行列式为1就
你的结论不对应该是:若特征多项式有m重根λ,则属于特征值λ的线性无关的特征向量不超过m个.(即几何重数不超过代数重数)参考证明:
根据公式:fA(x)=det(xI-A)方阵A的特征多项式fA(x)=|x-11-12-13;-14x-15-16;-17-18x-19|解方阵求出x就是特征值.
这个太简单了吧,求左边的行列式就等于右边了啊左边的行列式=(λ-2)[(λ+1)(λ-3)-4*(-1)]=(λ-2)[λ^2-2*λ-3+4]=(λ-2)(λ^2-2*λ+1)=(λ-2)(λ-1)
设λ为n阶矩阵A的特征值,p(x)为x的多项式,则p(λ)为p(A)的特征值,故:p(A)的特征值为p(λ1),p(λ2),……,p(λn)从而p(A)的特征多项式为:[λ-p(λ1)][λ-p(λ2
算错了呗,重新算吧
求解特征值,其实关键就是计算一个行列式. 计算矩阵对应的行列式通常使用3方法:1)直接展开.适用于简单矩阵(例如:对角矩阵,上三角等),和低阶矩阵.2)使用初等变换.3)特殊矩阵(例如:范达
要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式Ax=λx成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应
线性代数学习心得文/小潘各位学友好!首先让我们分析一下线性代数考试卷(本人以1999年上半年和下半年为例)我个人让为,先做计算题,填空题,然后证明题,选择题等(一定要坚持先易后难的原则,一定要.旁边有
直接用复Schur分解的证法过一遍就行了取一个实的单位特征向量x张成正交阵Q,然后对Q^TAQ的右下角用归纳再问:可以写一下么。。。。拜托啦再答:不是写给你了吗,看第二行
线性变换的特征多项式会有重根,这没有什么奇怪,线性变换的特征多项式就是一个一元多项式,多项式的根就是令多项式等于0所得的方程的根,我们知道方程是可以有重根的.比如方程(x-1)^3=0是一个三次方程,
当然是.
c是对的,因为特征多项式相等,说明有相同的特征值,而矩阵的行列式值就是特征值的乘积.A要求有相同的不变因子,B就很离谱了.