特征值及基础解系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:40:15
增广矩阵=154-1333-1252223-21r2-3r1,r3-2r1154-1330-16-1044-70-8-524-5r2-2r3154-133000-430-8-524-5r3+6r2,r
系数矩阵的行最简形为11/21000000每一行对应一个方程因为只有一个非零行,所以只有一个有效方程x1=(-1/2)x2-x3自由未知量x2,x3分别取(2,0),(0,1),代入解出x1,得基础解
我们课本最常见的就是三阶,而且考试也以三阶为主,我就给你用三阶的举例说明吧三阶方阵A求特征向量,特征值的方法:1,先求特征多项式|λE-A|=0解出特征值λ1,λ2,λ3特征值一定有三个(因为三阶,或
|A-λE|=(2-λ)^2(3-λ).A的特征值为2,2,3.(A-2E)X=0的基础解系为a1=(1,0,0)',a2=(0,-2,1)'.A的属于特征值2的所有特征向量为k1a1+k2a2,k1
不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系
-111-1就是-X1+X2+X3-X4=0分别令:X2=1,X3=0,X4=0,解得X1=1令:X2=0,X3=1,X4=0,解得X1=1令:X2=0,X3=0,X4=-1,解得X1=1(1,1,0
A=[1,3,5,7,5;1/3,1,2,3,2;1/5,1/2,1,3,1;1/7,1/3,1/3,1,1;1/5,1/2,1,1,1];[C,B]=eig(A);[d,e]=max(B);%b是特
设a,用-2-a,2-a,3-a,分别代替原方阵中-2,2,3,令新方阵的行列式=0,即A-aE取行列式令为零.解得a=-1或2,即特征值为-1和2,分别把-1和2带入(A-aE)x=0,解出齐次线性
我不知道,你具体的疑惑在哪里,知道一个n阶A方阵的特征值以后,我们一般是来求解这样一个可逆矩阵P,使得A与由特征值构成的对角阵相似.下面是一道简单例题,你看看,其实,书面上表达很抽象的.
特征值:3219/977-655/4444+724/743i-655/4444-724/743i特征向量:-79/334-79/668+652/3183i-79/668-652/3183i-69/85
解:系数矩阵A=112334125658r3-2r1-r3,r2-3r1112301-5-70000r1-r21071001-5-70000方程组的基础解系为:(-7,5,1,0)^T,(-10,7,
看图片吧!
再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础
基础解系:是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”解向量:是对于方程组而言的,就是“方程组的解”,是一个意思.特征值向量:对于矩阵而言的,特征向量有对应的特征值,如果Ax=
|A-λE|=-1-λ4-2-34-λ0-313-λr3-r2-1-λ4-2-34-λ00-(3-λ)3-λc2+c3-1-λ2-2-34-λ0003-λ=(3-λ)[(-1-λ)(4-λ)+6]=(
给你提供一种很专业的数值算法“幂法”,这是专门用来算矩阵最大特征值的经典算法.“幂法“的算法过程其实很简单,就是拿一个向量,不停地用A乘,最后就会慢慢趋近于最大特征值对应的特征向量.“幂法”在矩阵拥有
就拿第一个特征值方程组来说,很简单解得x1=x2=0,x3为任意值,方便起见可以取为1,后来乘个c就是任意值第二个特征值方程组,先看第三个方程,解得x1=1,x3=-1,那个取负号无所谓,走后都要乘c
系数矩阵变成一列只有一个1的形式就行了再问:有没有具体步骤再答:给你个类似的链接http://zhidao.baidu.com/link?url=FXAMOQdr-OYdO6cv3yst2et12aA