特征值及基础解系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:40:15
特征值及基础解系
求下列非齐次线性方程组的通解及相应的齐次线性方程组的一个基础解系

增广矩阵=154-1333-1252223-21r2-3r1,r3-2r1154-1330-16-1044-70-8-524-5r2-2r3154-133000-430-8-524-5r3+6r2,r

就是求特征值和特征向量时那个基础解系的问题

系数矩阵的行最简形为11/21000000每一行对应一个方程因为只有一个非零行,所以只有一个有效方程x1=(-1/2)x2-x3自由未知量x2,x3分别取(2,0),(0,1),代入解出x1,得基础解

请好人帮我讲讲线性代数“方阵的特征值和特征向量”里面的基础解系究竟怎么具体出来?

我们课本最常见的就是三阶,而且考试也以三阶为主,我就给你用三阶的举例说明吧三阶方阵A求特征向量,特征值的方法:1,先求特征多项式|λE-A|=0解出特征值λ1,λ2,λ3特征值一定有三个(因为三阶,或

求特征值及特征值对应的线性无关特征向量的解题步骤

|A-λE|=(2-λ)^2(3-λ).A的特征值为2,2,3.(A-2E)X=0的基础解系为a1=(1,0,0)',a2=(0,-2,1)'.A的属于特征值2的所有特征向量为k1a1+k2a2,k1

这是书上例题的一道求矩阵的全部特征值和特征向量的题,但我不懂的是求基础解系的部分:

不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系

已知矩阵的特征值算出带入得 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0,怎么算出他的基础解系?要

-111-1就是-X1+X2+X3-X4=0分别令:X2=1,X3=0,X4=0,解得X1=1令:X2=0,X3=1,X4=0,解得X1=1令:X2=0,X3=0,X4=-1,解得X1=1(1,1,0

用 matlab最大特征值及特征值所对应的特征向量.

A=[1,3,5,7,5;1/3,1,2,3,2;1/5,1/2,1,3,1;1/7,1/3,1/3,1,1;1/5,1/2,1,1,1];[C,B]=eig(A);[d,e]=max(B);%b是特

求方阵的特征值及特征值对应的特征向量

设a,用-2-a,2-a,3-a,分别代替原方阵中-2,2,3,令新方阵的行列式=0,即A-aE取行列式令为零.解得a=-1或2,即特征值为-1和2,分别把-1和2带入(A-aE)x=0,解出齐次线性

线性代数求基础解系已知一个n阶方阵的特征值,怎么求他的基础解系,最好举个例子说明下,求解的过程详细些最好,谢谢了

我不知道,你具体的疑惑在哪里,知道一个n阶A方阵的特征值以后,我们一般是来求解这样一个可逆矩阵P,使得A与由特征值构成的对角阵相似.下面是一道简单例题,你看看,其实,书面上表达很抽象的.

矩阵特征值及特征向量计算

特征值:3219/977-655/4444+724/743i-655/4444-724/743i特征向量:-79/334-79/668+652/3183i-79/668-652/3183i-69/85

求下列齐次线性方程组的基础解系及通解

解:系数矩阵A=112334125658r3-2r1-r3,r2-3r1112301-5-70000r1-r21071001-5-70000方程组的基础解系为:(-7,5,1,0)^T,(-10,7,

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

老师,您好!我想问下:基础解系,解向量,特征值向量,基的区别,

基础解系:是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”解向量:是对于方程组而言的,就是“方程组的解”,是一个意思.特征值向量:对于矩阵而言的,特征向量有对应的特征值,如果Ax=

求特征值及特征值对应的线性无关特征向量,

|A-λE|=-1-λ4-2-34-λ0-313-λr3-r2-1-λ4-2-34-λ00-(3-λ)3-λc2+c3-1-λ2-2-34-λ0003-λ=(3-λ)[(-1-λ)(4-λ)+6]=(

毕业论文中需要用matlab求解矩阵的最大特征值及对应的正规化特征向量并做一致性检验.因为没有matlab基础,不会编写

给你提供一种很专业的数值算法“幂法”,这是专门用来算矩阵最大特征值的经典算法.“幂法“的算法过程其实很简单,就是拿一个向量,不停地用A乘,最后就会慢慢趋近于最大特征值对应的特征向量.“幂法”在矩阵拥有

关于方阵的特征值与特征向量的解题步骤,是如何通过解线性方程组得到基础解系的?

就拿第一个特征值方程组来说,很简单解得x1=x2=0,x3为任意值,方便起见可以取为1,后来乘个c就是任意值第二个特征值方程组,先看第三个方程,解得x1=1,x3=-1,那个取负号无所谓,走后都要乘c

求线性方程组的基础解系及通解

系数矩阵变成一列只有一个1的形式就行了再问:有没有具体步骤再答:给你个类似的链接http://zhidao.baidu.com/link?url=FXAMOQdr-OYdO6cv3yst2et12aA