牧场上长满了牧草,每天都匀速生长,这片牧场上的草可供9头牛吃20天
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:15:52
这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以
20天总草量=20×10=200牛天10天总草量=15×10=150牛天所以在(20-10)天草生长了200-150=50牛天所以牧场长满草的时候是150-50=100牛天设可以供x头牛吃4天有(10
假设定一头牛一天吃草量为“1”1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3)
假设每头牛每天吃1份草每天生长的牧草可以供多少头牛吃一天:﹙17×30-19×24﹚÷﹙30-24﹚=9﹙头﹚19×24-9×24=240﹙头﹚就是说这个牧场的草够240头牛吃一天,即草场原有草240
6.666666天再问:我要过程再答:供9头牛吃20天,直接乘以2,给18头牛就是吃10天
解牛顿问题的关键是,要求出牧场上的“老草”可供多少头牛吃一天,“新长出的草”可供多少头牛吃一天的.因此,可按下列思路进行思考:①根据“10头牛可吃20天”,可算出够10×20=200(头)牛1天吃完.
草单位生长量=(5×30-7×20)÷(30-20)=1(份)原有草量=5×30-30×1=120(份)需要的天数(120+10×1-8×10)÷(6-1)=50÷5=10(天)答:剩下的羊10天可以
设每头牛每天吃草x平米,1500平米的草场每天长草y平米列方程组18*16x=1500+16y27*8x=1500+8yx=500/48y=375/46000平方米的草场每天长草4y平米(6000是1
设每头牛每天的草量为“1”20天草量:10×20=20010天草量:10×15=150每天新增草量:(200-150)÷(20-10)=5原有草量:200-20×5=100可供25头牛吃:100÷(2
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量.牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的.正是由于这个不
设为X.20-15X=15-10X则X=1请采纳.再问:请详细说说
10×20=200(份)15×10=150(份)(200-150)÷(20-10)=5(份)(200-5×20)=100(份)100÷(20-5)20/3(天)
解牛顿问题的关键是,要求出牧场上的“老草”可供多少头牛吃一天,“新长出的草”可供多少头牛吃一天的.因此,可按下列思路进行思考:①根据“10头牛可吃20天”,可算出够10×20=200(头)牛1天吃完.
假设每头牛每天吃草1份.1×10×20=200份1×15×10=150份200-150=50份草场每天长草:50÷﹙20-10﹚=5份草场原来有草:200-5×20=100份100÷5=20头5÷1=
设为X.20-15X=15-10X则X=1
设X头牛吃已有的草,剩下的吃每天长得草,X头牛吃20天吃完原有的草,10+X头牛10天吃完原有的草,X=5,原有的草要5头牛吃20天或者10头牛吃10天则可供105头牛吃1天
设为X.20-15X=15-10X则X=1
解牛顿问题的关键是,要求出牧场上的“老草”可供多少头牛吃一天,“新长出的草”可供多少头牛吃一天的.因此,可按下列思路进行思考:①根据“10头牛可吃20天”,可算出够10×20=200(头)牛1天吃完.
解牛顿问题的关键是,要求出牧场上的“老草”可供多少头牛吃一天,“新长出的草”可供多少头牛吃一天的.因此,可按下列思路进行思考:①根据“10头牛可吃20天”,可算出够10×20=200(头)牛1天吃完.
设每天速度为x,牛吃的为y,则有:10*20y-20x=15*10y-10x;200y-20x=150y-10x;50y=10x;y/x=1/5;x/y=5;所以每天长的够5头牛吃1天