点p是角aob内一点 分别画出点关于OA,OB的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:16:18
1、PC//OB,PD//OA,四边形CODP为平行四边形,CP=OD,OC=DP,PC//OB,PD//OA,∠ECP=∠EOF=∠PDF∠CEP=∠DFP=90△CEP∽△DFPCE/DF=CP/
由于p1是p关于oa的对称点,所以oa是pp1的垂直平分线,有垂直平分线性质易知pm=p1m,同理可知pn=np2所以,pm+mn+pn=p1m+mn+np=p1p2=5望给分.
尺规作图:过P作PC//AO交BO于C,作PC的中垂线,交PC于D,在射线OA上顺次截取OF=3PD,连结EP交OB于E.此时,PE:PF=2:1.
由对称可知PC=P1C,PD=P2D,所以PCD周长为P1P2的长,即16CM.角P1OP2为70度再问:对么?再答:绝对对对于第二问你可以连接PO角AOP=角AOP1,同理可知自己再想想,两倍关系不
连接OC,OD∠POB=∠BOD,∠COA=∠AOP,∠AOP+∠POB=30°,∠COD=60°,因为,OP=OC,且,OP=OD,所以,CO=DO,所以,三角形COD是等腰三角形,且一个角是60度
没有问题呀三角形的周长=线段MN的长再问:……MN的长再答:MP关于OA对称,则MP被OA垂直且平分,故EP=EM,同理FP=FN,则MN=NF+FE+EM=FP+FE+EP=三角形EFP的周长=20
7CM,因为P1P2分别是P关于AOBO的对称点,所以又PM=P1MPN=P2N即P1P2就等于三角形PMN的周长,中学时代经常碰到得题--
连接OP∵P1、P2分别是OA、OB的对称点∴P1P⊥OA,P2P⊥OB又∠AOP+∠BOP=∠AOB=25°(已知)∠AOP+∠OPP1=90°∠BOP+∠OPP2=90°∴∠OPP1+∠OPP2=
我来再答:再答:希望采纳我的答案哦再问:图片能否再清晰一点再答:再答:解决了嘛?采纳哦
20cmME=PE,NF=PF因为PE+PF+EF=20所以ME+NF+EF=MN=20
解题思路:认真审题,仔细观察和分析题干中的已知条件.根据点到直线的距离的定义进行判断求解.解题过程:线段PN的长度表示点P到直线OB的距离.最终答案:略
因为是对称点,所以MP=MP1,NP=NP2,所以P1P2=MP1+MN+NP2=MP+MN+NP=6cm3∠MPN=100°再问:能更清楚点吗?再答:∠OMN+∠ONM=180°—40°=140°所
P1D=DP,PC=CP2(对称)△PCD的周长=DP+PC+CD=P1D+DC+CP2=P1P2=8cm
△PCD=8cm.理由如下:连接P1.P∵P1,P关于AO对称,所以△P1PC是等腰三角形(这里要详细,三线合一.)P1C=PC同理P2D=PD∵P1P2=P1C+P2D+CD=C△CDP∴△CDP的
作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.从图上可看出△PMN的周长就是P1P2的长,∵∠AOB=30°,∴∠P1O
必须是PN啊,关键是你要弄清楚点到直线的距离是什么概念,我告诉你:点到直线的最短距离.什么最短?点到那条直线垂线段最短.
作法:1、连续OP; 2、以O为圆心,OP为半径作弧交OA于点C; 3、分别以P、C为圆心,OP为半径作弧相交于点D; 4、过点P、D作直线MN,则MN为所求.证明:(略)
如果问△OP1P2的话,那是等边三角形.连接OP、P1P2OP=OP1OP=OP2那么OP1=OP2OA平分∠POP1OB平分∠POP2所以∠P1OP2=2*∠AOB=60所以△P1OP2为等边三角形
必须时候PN啊,关键是你要弄清楚点到直线的距离是什么概念,我告诉你:点到直线的最短距离.什么最短?垂线!
连接PP1,PP2,因为轴对称 所以MP1=MP,NP2=NP因为P1P2=5 所以C△PMN=PM+PN+MN=P1P2