点P是菱形ABCD对角线AC上一个动点,PE⊥AD,PF⊥CD.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:54:22
解题思路:(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出DGAB=12,BEAB=13,进而得出DP
你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!再问:确定字母的位置一样吗再答:确定再答:再问:万分感谢
正方形可知AB=BC=CD=AD∠BAC=∠DAC=∠BCA=∠DCA=45°又有题知AE=CF有边角边SAS可知△ABE=△BCF=△CFD=△AED所以BF=FD=DE=EB四条边都相等的四边形为
∵四边形ABCD是正方形∴AD=BC∵AC是对角线∴∠DAC等于∠ACB∵AE=CF∴△ADE≌BFC∴BF=ED以此类推证出EB=BF=DF=ED∴四边形BFDE是菱形
解(1)以B为顶点作三角形APB的高可见三角形APB的高=三角形ABD的高(同样以B为顶点)三角形ABD的面积=8×6÷2÷2=12过B点的高=12×2÷5(AD)=4.8三角形PAB地面积=4.8×
=1/4*(6*8/2)y=6*8/2*(x/10)*(1/2),0
①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D
分别过点M、N作AC的垂线,交AC于E、F,可知PM^2=PE^2+AM^2-AE^2,PN^2=PF^2+CN^2-CF^2,根据题意可知当P点在AC的中点时PM+PN最小,因M、N为中点,可知这时
菱形ABCD的面积为3*8的一半是12那么菱形PECF的面积就是12PC除以AC
延长EP交BC于H点.∵ABCD是菱形.∴AD//BC,BC=AB=5.∠ACB=∠ACD.∴∠CHP=∠DEP=90°∴⊿CHP≌⊿CFP.∴PH=PF∵EH=S菱形ABCD÷BC=24/5∴PE+
PE=PA*sin∠PAEPF=PC*sin∠PCF=PCsin∠PAEPE+PF=ACsin∠PAES(ABCD)=2*S△ABC=2*(AB*ACsin∠PAE)/2=5*(PE+PF)=24PE
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABN
条件还差.ABCD是正方形好像你打错字了.很简单初二的题目?BE=ED=DF=FBAC垂直BD下面自己推
∵AB=CB=CD=AD,∠BAE=∠DAE=∠BCF=∠DCF=45°AE=AE=CF=CF∴△ABE≌△ADE≌△CBF≌△CDF∴BE=DE=BF=DF∴四边形EBFD是菱形
取AD的中点F,连接PF,那么PE=PF,因此PE+PB的最小值就等同于PF+PB的最小值.很显然,PF+PB的最小值就是F和B之间的直线.因为AB=2,∠BAD=60°,显然FB=根号3.由此,PE
题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等
PM+PN的最小值是10再问:求解的过程再答:设M点关于AC对称的点是E,因为菱形的对角线是角的角平分线,当P点移动到AC的中点时,MP+NP=EP+NP,此时N点和E点共线,即距离最小,又菱形对角线
取AD的中点O,连接PO,根据菱形的性质不难证明PO=PM,所MP+NP=OP+NP,所以当OPN三点在同一直线上的时候OP+NP是最小的,也就是OP的长,根据菱形的性质可以得到OP的长等于边长值为1
∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=32+42=5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上