点p是正方形abcd对角线BD上一点,猜想CD与PQ的数量关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:26:17
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
根号2△BEP的面积等于BE*PM/2;△BCP的面积等于BC*PN/2;BE=BC所以△BEC的面积等于BC*(PM+PN)/2;所以PM+PN等于△BEC中BC边上的高,等于BE*sin45°=根
答案:0.7072再问:我要过程再答:可以通过特殊点来计算,将P点与M点或者N点重合,再利用勾股定理。
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
1、过P作AB、BC垂线,足分别为HI,则HPIB为正方形,PH=PI,又∵∠EPF=∠HPI=RT∠,∴∠EPH=∠FPI,∴△PEH≌△PFI,∴PE=PF2、由第1小题可知△PEF为等边直角△,
证明:连接PC.∵四边形ABCD是正方形∴AD=CD又∵BD是正方形ABCD的对角线∴∠ADB=∠CDB=90°在△ADP与△CDP中AD=CD{∠ADB=∠CDBPD=PD∴△ADP≌△CDP(SA
连接PB,则三角形PBE面积为1/2EB*PF=1/2PF,PBC面积为1/2BC*PG=1/2PG,而三角形BEC面积=三角形PBE面积+三角形PBC面积.则1/2PF+1/2PG=BEC面积.所以
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠BPF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=
⑴当P点在AB上时:∵正方形边长=√2,对角线AC=√2×√2=2,∴AO=BO=1,∴正方形面积=2,∴△AOB的面积=2/4=½,连接PO,则△APO面积+△BPO面积=△ABO面积=&
①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D
连接AC,交BD于点O则AC⊥BD,AO=CO∵正方形的边长为1,所以AC=√2,CO=√2/2连BP∵S△BPC=1/2*BC*PQ,S△BPE=1/2BE*PR,S△BCE=1/2*BE*CO∴1
在直角△BDC中,BC=DC,BD=2,由勾股定理得:BC=√2,过点P作BC的垂线,垂足为E,得等腰直角△BPE,那么PE=(√2/2)x,所以S△PBC=1/2BC*PE=1/2*√2*√2/2*
1.已知正方形ABCD中,对角线AC=10CM,点P是AB边上的点,则点P到AC,BD的距离之和为__5倍根号2___.2.在矩形ABCD中,对角线AC,BD相交于点O,若角AOD=120度,AB=4
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
题目有问题!Q是什么?有图吗?
题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等
连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P
相等.证明:连接PC,∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=45°,BD=BD,∴△ABP≌△CBP,∴AP=CP,又四边形PFCE是矩形,∴PC=EF﹙矩形对角线相等﹚,∴AP
证明:(1)连AC,AP,AD=CD∠ADP=∠CDP=45°DP=DP⇒△ADP≅△CDP⇒PA=PC⇒∠PAC=∠PCAEA=PE⇒∠E