点G为△ABC的重心(三角形三边中线的加点),设向量BG=向量a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:43:40
点G为△ABC的重心(三角形三边中线的加点),设向量BG=向量a
已知三角形ABC的顶点为(3,4),重心G(1,1),顶点B在第二象限,垂心在原点,则点B的坐标

设点A(3,4)B(x1,y1)C(x2,y2)(说明:这里设A(x2,y2)B(x1,y1)C(3,4)计算的结果一样)因为,G(1,1)是△ABC的重心,由重心的定义:1=(3+x1+x2)/3,

已知点G是三角形ABC的重心,则向量GA+向量GB+向量GC=

=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0

如图,已知G为三角形ABC的重心,三角形ABC的三边长满足AB>BC>CA,若三角形GAB三角形G

是S1=S2=S3.由于重心是中线的三等分点,可得S1,S2,S3都是△ABC面积的三分之一.详细一点:延长CG交AB于点D,由于CD:GD=3:1所以△CAB与△GAB高线之比为3:1,具有同底AB

设三角形ABC的外心为O,垂心为H,重心为G,求证:O,G,H三点共线

向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线

证明G为三角形ABC所在平面内一点,GA+GB+GC=0点G是三角形ABC的重心

取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G

在△ABC中 G是重心 DE经过点G且平行于BC 求三角形ADE与四边形DBCE的面积之比

连接AG交BC于F因为G是重心,所以AG/AF=2/3因为DE平行于BC,所以△ABC相似于△ADE.则三角形ADE与四边形DBCE的面积之比为(2/3)^2=4/9

G为三角形ABC的重心,求证:向量GA+向量GB+向量GC=0

向量AB=a,向量AC=b延长AG,BG,CG分别交BC边,CA边,AB边于E,F,D.而,G为△ABC的重心向量BC=向量(AC-AB)=b-a向量AE=向量(AB+1/2*BC)=(a+b)/2向

麻烦的几何题三角形ABC,M为BC边的中点,G为三角形的重心.G'为点G通过点M的对称点,D为AB和CG'的交点,E为D

证明:如图:1、长AC,BG'交于N点,由于:BM=CM,GM=G'M所以四边形BG'CG是平行四边形.有:BH//DC、CL//BN因为:AL=LB,CL//BN所以:AC=

已知ABC为不共线三点,G为三角形ABC内一点,若(向量GA+GB+GC=0),求证G为ABC重心?

取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形\x0d∴向量GB=向量CE\x0d∴向量GB+向量GC=向量CE+向量GC=向量GE\x0d由向量GA+向量GB+向量GC

设G为三角形ABC的重心,过点G作直线分别交AB、AC于P、Q,已知向量AP=λ向量AB,

要解这个题目,首先要知道,由平面向量基本定理可推出:当向量a和b不共线时,若实数λ和μ满足λ*a+μ*b=0向量,则λ=μ=0.此题:设向量AB、AC分别为a、b,则AP=λ*a,AQ=μ*b,延长A

已知点G是三角形ABC的重心,三角形ABC的面积为9cm2,那么三角形BCG的面积为

重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2

在三角形ABC中,G是重心,D,E分别在边AB和AC上,且D,G,E三点共线,三角形ADE的面积为S1,四边形BCED的

(原题少了DE∥BC的条件)如图,点M、N为AB、AC中点,BM、CN交于P,则MN∥BC,且MN=BC/2,由△PMN∽△PBC得PM/PB=MN/BC=1/2; 当DE∥BC时∴ME/E

已知G为三角形ABC的重心,求证AG=2GF ·

你的重心画的太偏了,完全不在中线交点啊亲.用面积做,下面省略面积符号S.△GAE=△GEC△GFC=△GBF△GAD=△GDB又△BAE=△BEC,减去第一个式子,依次类推,会发现六个小三角形面积一样

如图:已知G为三角形ABC的重心,求证AG=2GF

重心的性质及证明方法  1、重心到顶点的距离与重心到对边中点的距离之比为2:1.   三角形ABC,E、F是AB,AC的中点.EC、FB交于G.   过E作EH平行BF. 

已知点g是三角形abc的重心,D,E过点G且DE平行BC求S三角形ade:S三角形abc的值

连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF

一直三点A(1,-8),B(3,2),C(2,-3),求过三角形ABC的重心G且与BC边平行的直线方程

Gx=(1+3+2)/3=2,Gy=(-8+2-3)/3=-3===>G(2,-3)直线BC的斜率:(-3-2)/(2-3)=5∴过三角形ABC的重心G且与BC边平行的直线方程:Y+3=5(X-2)=

如图,在三角形ABC中,H为垂心,G为重心,O为外心.求证:H,G,O三点共线,且HG=2GO

证明如下设O,H分别为外心和垂心取BC中点M,连接AM交OH于G,下面只要证明G是重心就行了OM⊥BCAH⊥BCΔAHG∽ΔMOG⇒AG/GM=AH/OM作ME∥BH交CH于E,取AC中点

三角形ABC的顶点A的坐标为(3,1),边AB的中点为D(2,4),三角形ABC的重心为G(3,4),则点B,点C的坐标

边AB的中点为D(2,4)和A的坐标为(3,1),就求出B点坐标为xB=2*2-3=1yB=2*4-1=7B(1,7)重心正好就是三个点的坐标均值xC=3*xG-xA-xB=9-3-1=5yC=3*y

若G为三角形ABC的重心 则 向量GE+向量GB+向量GC=?

E点在哪里?应该是A点吧,是A那么向量GA+向量GB+向量GC=0