点D为△ABC的垂直线段画点E为△ABC的角平分线求∠EAD的度数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:04:35
点D为△ABC的垂直线段画点E为△ABC的角平分线求∠EAD的度数
如图,在三角形abc中,d为bc的中点,de垂直ab,df垂直ac,点e,f为垂足,de等于df.求

证明:∵DE⊥AB,DF⊥AC∴∠DEB=∠DFC=90∵D是BC的中点∴BD=CD∵DE=DF∴△BDE≌△CDF(HL)∴∠B=∠C∴AB=AC希望能解决您的问题.

如图 在等腰RT△ABC中∠ACB=90 D为BC的中点DE垂直AB 垂足为点E 过点B作BF平行AC交DE的延长线于点

(1)证明:因为BF平行于AC所以∠BFC=∠FCA(两直线平行内错角相等)又DE垂直于AB,∠ABC=45°所以∠FBD=45°所以FB=BD即FB=DC(D为BC中点)且∠FBC为直角,AC=BC

如图所示,△ABC是等边三角形,点D、E、F分别是线段AB、CD、CA上的点``````

1、∵△ABC是等边△,∴可设AB=BC=CA=a,∠A=∠B=∠C=60°,设AD=BE=CF=b,则DB=EC=FA=a-b,∴易证△ADF≌△BED≌CFE,∴DF=ED=FE,∴△DEF是等边

已知:如图,在Rt△ABC中,∠C=90°,线段BC的垂直平分线上DE交AB于点D,交BC于点E,DF垂直AC,垂足为F

证明:DE是BC的垂直平分线.∠C=90°所以DE平行于ACBE=CE所以AD=DB(平行线等分线段定理)DF垂直AC所以DF平行于BC因为AD=DB所以AF=FC(平行线等分线段定理)即DF是线段A

如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,

(1)△DEF是等边三角形.证明如下:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,(2分)∴△ADF≌△BED≌△CFE,(3分)∴DF=D

如图,已知等边△ABC的髙为2013,P为△ABC内任意一点,PD垂直AB于D点,PE垂直于E点,试求PD+PE+PF的

AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF

在等腰三角形ABC中,AB=AC,D为BC上的一点,过点D作DE垂直AB,DF垂直AC,E,F为垂足.

分析:作CG为△ABC的一条高,DF是△ADC的一条高,DE是△ABD的一条高,能把这三条高联系在一起的是计算它们所在三角形的面积,由面积计算来找它们的数量关系.CG=DE+DF.理由如下:连接AD,

如图在△ABC中,D为BC的中点,过D点的直线CF交AC于点F,交AC的平行线BG于点G,DE垂直GF并交AB于点E,

1、证明:∵D是BC的中点∴BD=CD∵BG∥AC∴∠GBD=∠C∵∠BDG=∠CDF∴△BDG≌△CDF(ASA)∴BG=CF2、BE+CF>EF证明:∵△BDG≌△CDF∴GD=FD∵DE⊥GF∴

如图,在△ABC中,点O是边AC上一点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交AB的

证:(1)因点D、E为均为圆O上的两点,所以OD=OE,因此△ODE为等边三角形故∠ODE=∠OED,又∠ADO=∠PED=90°那么∠ADO+∠ODE=∠OED+∠DEP,即∠ADE=∠AEP;又由

如图,以线段AB为直径的○O交线段AC于点E,点OM垂直于AE交AE于点D,∠BOE=60°,∠C=60°,BC=2根号

首先可以的得出AB=6,所以圆的半径为3,A0=OM=OE=OB=3.∠A=30°,OD=3/2,AD=3根号3/2所以AM=3,所以△AMO为等边,所以∠AOE=60°同理△OME为等边,ME=3.

如图,在△ABC中,AD⊥BC,垂直为D,点E在CA的延长线上,EF垂直BC,垂足为F,EF与AB相交于点G,∠E∥∠A

题应该是∠E=∠AGE吧,因为E,A,D在一条直线上,EF⊥BC,AD⊥BC所以EF//AD所以∠E=∠DAC,∠EGA=∠BAD又因为∠E=∠AGE所以∠DAC=∠BAD所以AD平分∠BAC明白?

如图,△ABC中,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度

作AD垂直于BC因为AB=2*2^0.5所以AD=2.即以AD为直径的圆O半径为1.作连线EO和OF角BAC=60度,角BAD=角ABC=45度,所以角OAF=15度.所以角EOF=90+30=120

如图:在△ABC中,点D为边BC的中点,点E为线段AD上一点,且满足AE=2ED,则△ABC的面积是△BDE的面积的__

因为点D为边BC的中点,所以S△ABD=S△ACD=12S△ABC,因为AE=2ED所以S△BDE=12S△BEA,又因为S△BDE+S△BEA=S△ABD,即:S△BDE+2S△BDE=S△ABD=

点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE垂直AC于E,DF垂直BC于F.

∵点C是线段AB的垂直平分线CD上的点.∴∠DCA=∠DCB∵DE垂直AC于E,DF垂直BC于F∴∠DEC=∠DFC=90度∵DC=DC,∠DEC=∠DFC,∠DCA=∠DCB∴ΔCDE全等于ΔCDF

已知 如图 AF平分角BAC,BC垂直AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF

证明:∵AF平分∠BAC,∴∠CAD=∠DAB=1/2∠BAC.∵D与A关于E对称∴E为AD中点.∵BC⊥AD∴BC为AD的中垂线∴AC=CD.在Rt△ACE和Rt△ABE中,∠CAD=∠ACE=∠D

如图 AF平分角ABC BC垂直于AF,垂足为E,点D与点A关于E对称,PB分别与线段CF,AF相较于P,M.若角BAC

∠F=∠MCD∵AF平分∠BAC,BC⊥AF∴AF为BC的垂直平分线∴∠CAE=∠BAE=1/2∠BAC,∠BME=∠CME∵点D与点A关于点E对称∴AE=DE∴AC=DC,则∠CAE=∠CDE又∵∠

如图,从三角形ABC的顶点A引∠B,∠C的平分线的垂直线段AD,AE.垂足分别为点D,E,求证DE平行BC

延长AD交直线BC于点M,延长AE交直线BC于点N∵∠ABD=∠MBD,BD=BD∴ΔABD≌ΔCBD∴AD=MD同理AE=NE即DE是ΔANM的中位线∴DE∥BC

如图,在三角形ABC中,D为BC的中点,AD垂直BC于点D,DE垂直AB于点E,DE=5cm,求点D到AC的距离

解∵BD=DC∠ADB=∠ADC=90°有AD=AD∴△ABD≌△ADC∴∠BAD=∠CAD∵DE=5∴点D到AC的距离等于5(角平分线上的点到角两边的距离相等)

如图,在△ABC中,AB=AC,AD⊥BC垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂直为点E.

1、因为角MAC=2角EAC=2角B=2角BCA角BCA+角DAC=90,角EAC+角DAC=90所以角EAD=90证明了三个角为90,为矩形2、要正方形,只需AD=DC,此时角B=角BCA=45角B