点C为线段AE上一点,△ABC与△CDE都是等边三角形,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:12:52
点C为线段AE上一点,△ABC与△CDE都是等边三角形,
如图 已知C为线段AE上的一点 △ABC,△CDE是等边三角形.且.

(1)利用全等三角形,∵△ABC,△CDE是等边三角形.∴∠BAE=∠DEA,BC=AC,CD=CE∴△ACD≌△BCE∴AD=BE(2)由(1)知:∠DAE=∠EBC∴∠DAE+∠BEC==∠EBC

已知△ABC为等边三角形,在图a中,点M是线段BC上任意一点,点N是线段CA上任意一点,且

再问:第一问怎么知道的∠ABM=∠BCN?再答:等边三角形的内角啊,都是60度再问:奥~~~~对了,怪不得做不出来呢,原来没仔细看,呵呵谢谢你了。会采纳你的。

如图,已知点C式线段BD上一点,分别以BC,CD为边长在BD同侧作等边三角形△ABC和△CDE.

角BCE=角ACD=120所以三角形BCE全等于三角形ACD所以角EBD=角MAD又因为AC=BC角MCB=角ACN=60所以三角形MCB全等于三角形ACN所以CM=CN

数学天才帮个忙撒~点C是线段AB上一点,分别以AB、BC为边在AB同侧作等边△ACD和等边△BCE,AE交DC于点M,B

以A点为原点,AB为x轴,D点一侧为y轴的正方向建立直角坐标系A(0,0)C(a,0)B(a+b,0)D(a/2,根号(3)a/2)E(a+b/2,根号(3)b/2)直线AE:y=(根号(3)b/(2

如图,点C为线段AB上一点,△ACM,△CBN是等边三角形.

∵AC=MC,NC=BC,∠MCB=∠ACN=120°∴△ACN≌△BCM∴AN=BM,∠ANC=∠CBM∴△CPN≌△CQB∴CP=CQ,∠BCQ=∠NCP∵∠BCQ+∠QCN=∠BCN=60°∴∠

如图,在△ABC中,AE平分∠BAC,∠C>∠B,F为AE上一点,且FD⊥BC于D点.试推出∠EFD,∠B与∠C的关系式

证明:作AG⊥BC已知FD⊥BCFD//AG∠EFD=∠EAG(两种情况一样)设∠EAG=∠EFD=a∠CAG=x则∠C=90°-XEA平分∠A∠BAE=∠CAE=∠EAG+∠CAG=X+a∠BAG=

如图,C为AE上一点,再AE同侧分别作正△ABC和正△CDE.

先证明△ACD与△BCE全等(SAS)(用两个等边三角形证),角CAD=角CBE角ACB=角DCE=60所以角PCQ=60BC=AC角CAP=角CBQ角PCA=角QCB=60所以△APC与△BQC全等

如图,C为线段AB上一点,分别以AC、CB为边在AB同侧做等边三角形△ACD和等边△BCE,AE交DC于G点,DB交CE

∵∠ACD=∠BCE=60°=∠GCH,AC=DC,EC=BC∴∠ACE=120°=∠DCB∴△ACE≌△DCB(SAS)∴∠BDC=∠EAC(对应角相等)又∵AC=DC,∠ACG=∠GCH,∠BDC

如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC

嗯能把问题说的明白些吗证明什么?HC平分?平分PQ吗?再问:平分角AHE.再答:在△ACD和△BCE中∵△ABC和△CDE是等边△∴BC=ACCE=CD∠BCA=∠BAC=∠ABC=∠DCE=∠DEC

如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE

证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,

如图,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于点D.

角DFE=角BEA-角FDE=角BEA-90角BEA=角C+1/2角BAC=角C+1/2(180-角C-角B)=90+1/2(角C-角B)角DFE=1/2(角C-角B)

已知点C是线段AB上任意一点,且△ADC、△CEB是等边三角形,连接BD、AE且交点为F,求证AF×AE+BF×BD=A

延长AD,BE交于一点G,而△ABG为等边三角形,设△ADC边长为a,△CEB边长b,所以△ABG边长为a+b由于这个图形的性质,我们可以容易证明△DCB≌△ACE(SAS)所以∠EAB+∠DBA=6

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与B

∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正

如图所示,点C为线段AE上一点,△ABC,△CDE都是等边三角形,直线AD,BC交于点M,直线BE、CD交于点N.是判断

等边△CMN证明:∵等边△ABC,△CDE∴AC=BC,CD=CE,∠ACB=∠DCE=60∴∠BCD=180-∠ACB-∠DCE=60∴∠BCD=∠ACB∵∠ACD=∠ACB+∠BCD=120,∠B

如图:在△ABC中,点D为边BC的中点,点E为线段AD上一点,且满足AE=2ED,则△ABC的面积是△BDE的面积的__

因为点D为边BC的中点,所以S△ABD=S△ACD=12S△ABC,因为AE=2ED所以S△BDE=12S△BEA,又因为S△BDE+S△BEA=S△ABD,即:S△BDE+2S△BDE=S△ABD=

C为线段AE上的一点,分别以AC,CE为边在AE的同侧作等边 △ABC和等边△CDE,连接AD,BE交于点F.

由已知条件可得△BCE与△ACD全等,所以∠DAE=∠EBC.在AD上取一点G使得∠ABG=∠EBC,连接BG.则∠ABG=∠EBC=∠DAE.可证△BGF为等边三角形,根据三角形外角等于不相邻内角和

已知C为线段AB上的一点,△ACD与△BCE都是正三角形,AE与BD交于F点,求证:∠AFC=∠BFC

证明:∵CE=CB,CA=CD,∠DCE=180°-60°-60°=60°∠DCB=∠DCE+∠ECB=120°∠ACE=∠ACD+∠DCE=120°=∠DCB∴△ACE≌△DCB则∠CDF=∠CAF

如图,点C是线段AE上一点,三角形ABC,三角形CDE,都是等吧三角形,直线AD,BC交予点N判断三角形CMN是什么△

三角形CMN是等边三角形证明:因为三角形ABC是等边三角形所以AC=BC角ACB=60度因为三角形CDE是等边三角形所以CD=CE角DCE=80度因为角ACD=角ACB+角BCD=60+角BCD角BC

如图,点C为线段AB上一点,△ACM,△CBN

方法:先证:△ACN≌△MCB你已经会了再证明△NCE≌△BCFASA∠NCE=∠2NC=BC∠CNE=∠CBF由第一个全等得到∴得到CE=CF∵∠CNE=60°你已会

已知C是线段BE上一点 △ ABC和△DCE是等边三角形 求证 BD=AE

证明∵△ABC,△DCE为等边△,∴AC=BC,DC=DE,∠ACB=∠DCE=60°∴∠ACE=∠DCB∴△ACE≌△BCD∴BD=AE