点CEBF在同一直线上,AC平行DF,AC=DF,BC=EF.求证:AB=DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:17:46
点CEBF在同一直线上,AC平行DF,AC=DF,BC=EF.求证:AB=DE
如图,点A,B,D,E在同一直线上,AC=EF,BC=DF,AD=EB,求证:AC//EF.

因为AD=EB所以AD-BD=EB-BD即AB=ED在三角形ABC与三角形EDF中:AC=EFBC=DFAB=ED(已证)所以三角形ABC全等于三角形EDF(SSS)所以∠A=∠E又因为A、B、D、E

已知:A、B、C三个点在同一直线上,若线段AB=8,BC=5,则线段AC=______.

解;如图①:AC=AB+BC=5+8=13,如图②:AC=AB-BC=8-5=3.故答案为:13或3.

如图,已知点A、B、C、D在同一直线上,AM=CN ,BM==DN,角M=角N,求证:AC=BD

第一个问题,因为边角边,显然有三角形AMB全等于三角形CND,所以有AB=CD,同时加上BC,得AC=BD.第二个问题,9.938乘以10的9次方.

如图,点A,B,C,D在同一直线上,AC=BD,∠M=∠N,BM//DN.试说明AM//CN

已知BD=AC,且BC为共线,则CD=AB;又知DN//BM,∠N=∠M,而CD与AC在同一线,则∠D=∠B,又得出AB=CD,则∠A=∠C,所以AM//CN

如图,B,C,D,三点在同一直线上,△ADE都是等边三角形.试说明,(1)CE=AC+DC (2) ∠ECD=60°

证明:在△ABD和△CAE中AB=AC,AD=AE∠BAD=∠BAC+∠CAD=∠CAD+∠DAE=∠CAE∴△ABD≌△CAE∴CE=BD=BC+CD=AC+CD因∠ACB=60°∠ACE=60°∠

点CEBF在同一直线上 AC‖DF AC=DF BF=CE △ABC△DEF全等吗

证明:∵AC∥DF∴∠C=∠F∵BC=CE+BE,EF=BF+BE,BF=CE∴BC=EF∵AC=DF∴△ABC≌△DEF(SAS)

如图,已知点A、C、B、D在同一直线上,AM=CN,BM=DN,∠M=∠N,求证:AC=BD.

证明:∵AM=CN,∠M=∠N,BM=DN,∴△AMB≌△CND.∴AB=CD.∴AB-BC=CD-BC.即:AC=BD.

如图2,已知点A,B,C,D在同一直线上,AC=BD,AM∥CN,BM∥DN,求证AM=CN

∵AC=BD∴AC+BC=BC+BD即AB=CD∵AM∥CN,BM∥DN∴∠MAB=∠NCD,∠MBA=∠NDC∴△ABM≌△CDN(ASA)∴AM=CN再问:可以再详细些

如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.

证明:∵AD=EB∴AD-BD=EB-BD,即AB=ED        又∵BC∥DF,∴∠CBD=∠FDB 

点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.

(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,∴△ABC∽△EDC,∴∠CBD=∠CAE,∴∠AFB=180°-∠CAE-∠BAC-∠ABD=180°-∠BAC-∠ABC=∠ACB,∴∠

如图,已知点A.B.C.D在同一直线上,AM=CN,BM=DN,角M=角N,试说明AC=BD

∵在△AMB,△CND中AM=CN(已知)∠M=∠N(已知) BM=DN(已知)∴△MBA≌△CND(SAS)∴AB=CD(全等三角形对应边相等)∴AB-CB=CD-CB(等式性质)即AC=BD

如图,已知点a,c,b,d,在同一直线上,am等于cn,角m等于角n,试证明ac等于bd

图呢?再问:我不会发图啊、、再答:没图怎么证明

已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.

证明:∵AB∥CD,∴∠BAC=∠ECD,在△BAC和△ECD中AB=EC∠BAC=∠ECDAC=CD,∴△BAC≌△ECD(SAS),∴CB=ED.

如图,已知点A、B、C在同一直线上,M、N分别是AC、BC的中点.

(1)∵AB=20,BC=8,∴AC=AB+BC=28,∵点A、B、C在同一直线上,M、N分别是AC、BC的中点,∴MC=12AC=14,NC=12BC=4,∴MN=MC-NC=14-4=10;(2)

如图点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点

考点:旋转的性质;三角形内角和定理;相似三角形的判定与性质.专题:压轴题;探究型.分析:由题意易得△ABC∽△EDC,进一步证得△BCD∽△ACE,进而可得∠AFB=∠CBD+∠AEC=∠CAE+∠A

同一直线上的若干点,在同一投射面上的平行投影有什么性质

同一直线上的若干点,与在同一投射面上的平行投影,对应相等.

怎样判定直线或点在同一平面上

如果是判断两点是否在同一平面的话,就通过这两点画一条线段,如果这条线段都在平面上,那么就说这两个点在同一平面上!如果是判断两条直线是否在同一平面的话,就看直线到平面的距离是否为0,如果为0,就是在这个