渐近线方程y=±3/4 x焦点坐标为(-5√2,0)和(5√2,0)求双曲线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:25:58
y=±√3x所以b/a=√3b²=3a²焦点在x轴则F(c,0)所以距离|√3c-0|/√(3+1)=3c=6/√3c²=12=a²+b²=4a
y=±√3x;(1)焦点在x轴上,则b/a=√3,b=√3a;焦点(c,0)到直线y=√3x的距离d=︱√3c︱/2=3,所以得c=2√3;a^2+b^2=a^2+3a^2=4a^2=c^2=12,所
渐近线是y=±(3/4)x,则设此双曲线方程是:y²/9-x²/16=m(m>0),即:x²/(9m)-y²/(16m)=1因c=√26,则c²=a&
∵x^2/13+y^2/(13/4)=1.∴a^2-13,b^2=13/4,a>b,焦点在X轴上.c2=a2-b^2=13-13/4=39/4.c=±√39/2.由渐近线y=±x/2得:b/a=1/2
两条渐近线方程2x±y=0设双曲线方程为4x²-y²=k(k≠0)(1)k>0时,焦点在x轴上,c²=k/4+k=5k/4∴焦点为(±√5k/2,0),∴|√5k|/√(
有双曲线的焦点在圆上得c=10,如焦点在x轴上,有渐近线方程得b/a=4/3.结合c²=a²+b²解得a=6,b=8,双曲线方程为x²/36-y²/6
x2/36+y2/64=1不记得了,估计做错了
椭圆的焦点为(2√3,0),(-2√3,0),焦点在x轴上,c^2=12利用x+3y=0可求出y=-√3/3x,即b/a=√3/3,把b=√(c^2-a^2)带入b/a=√3/3即可求出a^2=9,则
由双曲线渐近线方程可知ba=3 ①因为抛物线的焦点为(10,0),所以c=10②又c2=a2+b2③联立①②③,解得a2=1,b2=9,所以双曲线的方程为x2− y29
根据题意,设双曲线方程是x^2/(1/16)-y^2/(1/9)=p故(p/16)+(p/9)=100所以p=216所以双曲线方程是16x^2-9y^2=216考虑到焦点也可以在y轴上,因此最终答案是
一条渐近线方程为4y=3x,即b/a=3/4.设方程是x^2/(4k)^2-y^2/(3k)^2=1.(k>0)那么c=根号(a^2+b^2)=5k.焦点坐标是(5k,0)|3*5k|/根号(9+16
渐近线方程为3x+4y=0,那么设方程是9x^2-16y^2=k.P(-4,-6)代入得到9*16-16*36=k,k=-432即方程是16y^2-9x^2=432即有y^2/27-x^2/48=1
y=±根号3x是渐近线,所以b/a=√3,设双曲线为x²/a²-y²/(3a²)=1,c²=a²+b²=4a²右焦点为(
双曲线x^2/4-y^2/12=1焦点分别为(-4,0),(4,0)设双曲线x^2/a^2-y^2/b^2=1两条渐近线方程为y=±√3xb/a=√3b^2/a^2=3c=4a^2+b^2=c^216
椭圆X^2/10+Y^2/5=1的一对顶点实轴顶点(√10,0)(-√10,0)虚轴顶点(0,√5)(0,-√5)当双曲线的焦点为实轴顶点时b/a=3/4c=√10a^2+b^2=c^2a^2+9a^
如图所示,我qq 1482478317,还有疑问可以问我
y²/64-x²/36=1
一种是X平方/36-Y平方/64=1另外一种Y平方/64-X平方/36=1希望采纳
将9x^2-16y^2=144两边同除以144得到x^2/16-y^2/9=1,所以2a=8,2b=6e,(5,0)(-5,0),O(∩_∩)O,希望对你有帮助
设双曲线方程为16y^2-9x^2=k(k>0)将x=0代入有实轴长为√k/2=12解得k=578双曲线方程为16y^2-9x^2=578