f^2(x)dx 收敛,证明|f(x) x|dx 收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:10:16
构造g(t)=t^2-2f(x)t+f(x)^2=(t-f(x))^2,易知g非负将g视为x的函数在[0,1]内积分,得到的结果是关于t的二次函数,因为每点函数值非负,得到的二次函数也是非负的,所以判
∫[0,a][f(x)+f(2a-x)]dx=∫[0,a]f(x)dx+∫[0,a]f(2a-x)dx令t=2a-x,x=2a-t,dx=-dt,x=0时,t=2a,x-a时,t=a因此上式变为=∫[
∫(1,2)f(3-x)dx令t=3-x,则x=3-t,从而dx=-dt从而∫(1,2)f(3-x)dx=∫(2,1)f(t)(-dt)=∫(1,2)f(t)dt==∫(1,2)f(x)dx.
左边=∫[-a→a]f(x)dx=∫[-a→0]f(x)dx+∫[0→a]f(x)dx前一个积分换元,令x=-u,则dx=-du,u:a→0=∫[a→0]f(-u)d(-u)+∫[0→a]f(x)dx
积分值=(变量替换x=pi/2-t)积分(0到pi/2)f(cosx)/(f(sinx)+f(cosx)),两者相加(就是两倍的积分值),被积函数是1,故积分值是pi/2,因此原积分值是pi/4
证:注:符号=∫(a,b)表示在[a,b]上的定积分先考察左边:左边令t=cosx,因为x∈[0,π/2],所以t∈[0,1],x=arccost,dx=-dt/√(1-t^2)所以左边=-∫(1,0
左边交换积分顺序得=2积分(从0到a)f(y)dy积分(从0到y)f(x)dx变量x,y互换=2积分(从0到a)f(x)dx积分(从0到x)f(y)dy原式与上式相加得原式=积分(从0到a)f(x)d
∫[0,a]f(x^2)dx=∫[0,a]f((-x)^2)dx=∫[-a,0]f(x^2)dx∫[0,a]f(x^2)dx+∫[-a,0]f(x^2)dx=∫[-a,a]f(x^2)dx得证.
这是柯西不等式的积分形式可用二次函数证区间省略显然有0≦∫[t+f(x)]²dx又∫[t+f(x)]²dx=∫t²+2tf(x)+f(x)²dx=t²
按照广义积分的充分必要条件积分f(x)dx收敛limxln(s)f(x)=M(有界)所以limxf(x)=0
如图.另一方面,从t=x-(1/x)的图像上看,x=0处无定义,图像分左右支.反解后相当于求反函数(关于直线t=x做对称),于是原来的右支变为恒大于零,左支恒小于零.所以书上的证明是对的.
反证,假设limf(x)不等于0,不妨设limf(x)=b,b>0由极限的保号性和有界性可知,存在X,存在c,0cf(x)dx=f(x)dx[x从a到X]+f(x)dx[x从X到正无穷大]前一部分为定
不难证明数列是单调增的,于是数列极限存在.
本题证明有一定的技巧,下面给出两种证法,其中第二种证法需用到二重积分,如没学过二重积分,只看第一种证法即可.
由于f(x)在[0,1]内连续,且∫0~1/2f(1-2x)dx可化简为-1/2∫0~1/2f(1-2x)d(1-2x)因为积分的区间是x∈[0,1/2],所以1-2x∈[0,1]这里我们可以把1-2
这个不等式的证明方法有很多,比如用二重积分;下面介绍一种利用一元二次方程判别式的方法:
级数∑1/n^2与∑f(n)^2收敛所以∑[f(n)^2+1/n^2]/2收敛因为f(n)/n=根号(f(n)^2/n^2)
考虑函数g(x)=|f(x)|+|f(x+1)|+...+|f(x+n)|+...g(x)非负可测,在[0,1]上积分,由逐项积分∫[0,1]g(x)dx=∑[n从0到无穷)∫[0,1]|f(x+n)
右边=积分(0a)(f(x))dx+积分(0a)(f(-x))dx令t=-xt属于(-a,0)积分(0a)(f(-x))dx=积分(0-a)(f(t))-dt=积分(-a0)(f(t))dt=积分(-