fx在区间(a,b)上连续,且f(a )f(a-)存在,证明fx有界

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:04:58
fx在区间(a,b)上连续,且f(a )f(a-)存在,证明fx有界
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少

至少有一个点,f(x)=0,且该点的导数f'(x)≠0你可以假设f(x)=sinx从0~2π的图案当x=π的时候f(x)=0而这个图像,π的面积和π~2π的面积是相等的.但f(x)从0~π的积分是正的

证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.

令g(x)=f(x)x∈(a,b)g(x)=f(a+)x=ag(x)=f(b-)x=b显然g(x)在[a,b]内连续,所以一致连续.当然在(a,b)连续.g(x)在(a,b)正好为f(x)

高等数学定积分一题证明:设函数f(x)在区间[a,b]上连续,g(x)在[a,b]上连续且不变号,则在[a,b]存在一点

函数f(x)在区间[a,b]上连续,所以有最大值与最小值,分别设为M,N.不妨设g(x)≥0N≤f(x)≤MNg(x)≤f(x)g(x)≤Mg(x)∫[a,b]Ng(x)dx≤∫[a,b]f(x)g(

若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.

(1)令g(x)=f(x)-x在区间(a,b)内连续g(a)=b-a>0g(b)=a-

已知函数y=f(x)在闭区间[a,b]上连续且非常数函数,在开区间(a,b)内可导

导数≤0说明f(x)在[a,b]上为减函数且函数在闭区间上连续,就必有最大值和最小值所以说嘛对于任意k,h(a=f(b)即f(x)在[a,b]上的值域为[f(b),f(a)]

定积分换元法的条件设函数f(x)在区间[a,b]上连续;函数g(t)在区间[m,n]上是单值的且有连续导数;当t在区间[

1.不要求单调,证明中可以看出来2.如果函数f(x)在比[a,b]更大的区间[A,B]上确定且连续,于是只需要求g(t)的值不越出区间[A,B]的范围就够了感觉你心很细,建议你苦读一下菲赫金哥尔茨的(

设函数f(x)在区间[a,b]上连续,且f(a)b.证明存在ξ∈(a,b),使得f(ξ)=ξ

令g(x)=f(x)-x,由题意知g(x)连续g(a)=f(a)-a0∴g(a)g(b)

1.设函数f(x)在闭区间[a,b]上连续,且f(a)〈a,f(b)〉b,试证:在开区间(a,b)内,至少存在一个点ξ,

1、设g(x)=f(x)-x,g(x)在【a,b】上连续,g(a)=f(a)-a0,由零点定理得,至少存在一点ε在(a,b),使得g(ε)=0,即f(ε)=ε2、∵f(x)是闭区间(a,b)上的连续函

为何函数fx在闭区间上连续,就一定在该区间上一致连续

前一句已经说在此区间连续,就一定连续啊再问:那在开区间上连续有为何不一定一致连续再答:只在一个区间内连续,不一定在定义域内连续啊再答:如f(x)=tanX再答:在负二分之派到正二分之派上为连续再答:但

证明:有f(x+y)=fx+fy且fx在0处连续,则函数fx在R上连续,且fx=ax,其中a=f(1)

亲,百度一下柯西函数方程吧.过程过于复杂的

设函数g在[a,b]上连续,且a

构造函数f(x)=g(x)-x.易知,函数f(x)在[a,b]上连续.再由a≤g(x)≤b可知,f(a)=g(a)-a≥0,f(b)=g(b)-b≤0,∴由“零点定理”可知,必有实数m∈[a,b],使

设函数g在[a,b]上连续,且 a

构造F(x)=g(x)-x设g(x1)=a是g(x)的最小值g(x2)=b是g(x)的最大值不妨设x1

设f(x)在区间[a,b]上连续,在(a,b)可导,

/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),

设f(x)在闭区间(a,b)上连续,且a

此题漏了一个条件m,n>0.如果f(c)=f(d),取w=c即可.如果f(c)不=f(d),令g(x)=f(x)-(mf(c)+nf(d))/(m+n),a

若函数fx在[a,b]上连续,AB为两个任意正数,试证:

f(x)在闭区间连续,则存在最大和最小值,设为m,M所以m

设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c

这个很显然分别在(a,c)和(c,b)上用Rolle定理得存在x1,x2满足a再问:谢谢。能再具体些吗再答:够具体了,再搞不懂就把Rolle定理的式子自己写一下,不要太偷懒再问:谢谢我能在问你一个问题

设函数f(X)在区间[a,b]上连续,且f(a)b.证明存在c属于(a,b),使得f(c)=c

f(X)在区间[a,b]上连续,F(X)=f(X)-X在区间[a,b]上连续F(a)0存在c属于(a,b),使得F(c)=0,存在c属于(a,b),使得f(c)=c