fx在区间(a,b)上连续,且f(a )f(a-)存在,证明fx有界
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:04:58
至少有一个点,f(x)=0,且该点的导数f'(x)≠0你可以假设f(x)=sinx从0~2π的图案当x=π的时候f(x)=0而这个图像,π的面积和π~2π的面积是相等的.但f(x)从0~π的积分是正的
令g(x)=f(x)x∈(a,b)g(x)=f(a+)x=ag(x)=f(b-)x=b显然g(x)在[a,b]内连续,所以一致连续.当然在(a,b)连续.g(x)在(a,b)正好为f(x)
函数f(x)在区间[a,b]上连续,所以有最大值与最小值,分别设为M,N.不妨设g(x)≥0N≤f(x)≤MNg(x)≤f(x)g(x)≤Mg(x)∫[a,b]Ng(x)dx≤∫[a,b]f(x)g(
(1)令g(x)=f(x)-x在区间(a,b)内连续g(a)=b-a>0g(b)=a-
导数≤0说明f(x)在[a,b]上为减函数且函数在闭区间上连续,就必有最大值和最小值所以说嘛对于任意k,h(a=f(b)即f(x)在[a,b]上的值域为[f(b),f(a)]
1.不要求单调,证明中可以看出来2.如果函数f(x)在比[a,b]更大的区间[A,B]上确定且连续,于是只需要求g(t)的值不越出区间[A,B]的范围就够了感觉你心很细,建议你苦读一下菲赫金哥尔茨的(
令g(x)=f(x)-x,由题意知g(x)连续g(a)=f(a)-a0∴g(a)g(b)
1、设g(x)=f(x)-x,g(x)在【a,b】上连续,g(a)=f(a)-a0,由零点定理得,至少存在一点ε在(a,b),使得g(ε)=0,即f(ε)=ε2、∵f(x)是闭区间(a,b)上的连续函
前一句已经说在此区间连续,就一定连续啊再问:那在开区间上连续有为何不一定一致连续再答:只在一个区间内连续,不一定在定义域内连续啊再答:如f(x)=tanX再答:在负二分之派到正二分之派上为连续再答:但
亲,百度一下柯西函数方程吧.过程过于复杂的
构造函数f(x)=g(x)-x.易知,函数f(x)在[a,b]上连续.再由a≤g(x)≤b可知,f(a)=g(a)-a≥0,f(b)=g(b)-b≤0,∴由“零点定理”可知,必有实数m∈[a,b],使
构造F(x)=g(x)-x设g(x1)=a是g(x)的最小值g(x2)=b是g(x)的最大值不妨设x1
/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),
此题漏了一个条件m,n>0.如果f(c)=f(d),取w=c即可.如果f(c)不=f(d),令g(x)=f(x)-(mf(c)+nf(d))/(m+n),a
设单调递增,在ab间取任一点ea
f(x)在闭区间连续,则存在最大和最小值,设为m,M所以m
这个很显然分别在(a,c)和(c,b)上用Rolle定理得存在x1,x2满足a再问:谢谢。能再具体些吗再答:够具体了,再搞不懂就把Rolle定理的式子自己写一下,不要太偷懒再问:谢谢我能在问你一个问题
f(X)在区间[a,b]上连续,F(X)=f(X)-X在区间[a,b]上连续F(a)0存在c属于(a,b),使得F(c)=0,存在c属于(a,b),使得f(c)=c