fx在0到1上连续f1等于2f0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:41:15
fx在0到1上连续f1等于2f0
已知定义在R上的偶函数fx在区间0到正无穷上是单调增函数,若f1小于fx,求x取值范围

该偶函数区间0到正无穷上是单调增函数,那么在负无穷大到0上是单调减函数,且f(x)=f(-x),f(x)>f(1)=f(-1),那么x<-1或x>1.

高数一道证明题 设函数fx在0,1上连续,在0,1内可导,且3乘上积分号2/3到1 fxdx

等式左边,积分中值定理:3*f(ξ)*(1-2/3)=f(ξ)=f(0)(0

已知函数fx=ax²+1/bx+c(a,b,c属于Z)满足F(-x)+f(x)等于0且f1=2,f2

额,这道题这样做的.∵f(-x)+f(x)=0∴这个函数是奇函数.f(-x)=-f(x)(ax²+1)/(-bx+c)=-(ax²+1)/(bx+c)所以-bx+c=-bx-cc=

设函数f(x)在负无穷到正无穷内连续,且F(x)=∫(0到x)(x-2t)f(t)dt,证明若fx为偶函数,则Fx也是偶

再问:-x怎么变成x的再答:那一步令u=-t。所以上下限都加负号

已知函数fx=ax2+bx+c,若f1>0,f2<0,则fx在(1,2)上零点的个数为()

B再问:好吧,信你~再答:不是2次也不影响,因为f1>0,f2<0,应经保证了函数至少有一个0点因为函数是连续的再答:不影响因题目应经保证了至少有一个0点

已知函数fx在定义域[-1,1]上为增函数,则满足fx<f1/2的实数x

解题思路:首先函数在给定区间有意义,-1小于等于x小于等于1,然后结合单调性解不等式解题过程:

关于函数连续证明fx在〔0,2]连续且f(2)=f(0),证明存在x2-x1=1使得f(x1)=f(x2).

由于所给出的区间左边是开的,所以补充定义f(0)=limf(x)使其在闭区间[0,2]连续构造函数g(x)=f(x+1)-f(x)g(0)=f(1)-f(0),g(1)=f(2)-f(1)g(0)+g

已知函数fx是定义在r上的奇函数,且f(x+2)等于负fx,若f1等于1,则f(3)-f(4)=

f(x+4)=-f(x+2)=f(x)所以函数周期为4再答:f(3)=f(-1+4)=f(-1)=-f(1)=-1f(4)=f(0)=-f(0)=0f(3)-f(4)=1再问:周期怎么出来的啊?再答:

fx在R上是偶函数,x小于等于0时,fx=1-x/1+x 1.求f(x)2.解方程fx=0

设x>0,则-x<0所以f(-x)=(1+x)/(1-x)(x>0)因为f(x)是偶函数,所以f(-x)=f(x)(x>0)所以f(x)=f(-x)=(1+x)/(1-x)(x>0)所以f(x)=(1

设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)等于

刚回荅:∫xf(x)f'(x)dx=(1/2)∫xdf(x)^2=(1/2)xf(x)^2-(1/2)∫f(x)^2dx,代入上下限后=-1/2.选D

证明:有f(x+y)=fx+fy且fx在0处连续,则函数fx在R上连续,且fx=ax,其中a=f(1)

亲,百度一下柯西函数方程吧.过程过于复杂的

fx是定义在(0,正无穷)上的增函数,且f(x/y)=fx-fy求f1 若f6=1,解不等式f(x+3)-f(1/x)<

令x=y=1带入原式f(1)=f1-f1=0令x=36y=6带入原式f(6)=f36-f6所以f36=2f(x+3)-f(1/x)=f[(x+3)/(1/x)]不等式f(x+3)-f(1/x)<2即f

函数fx=ax2+bx+c,若f1>0,f2<0,则fx在(1,2)上零点的个数为几个

有一个或2个要是在(1,2)单调唯一,有一个再问:请问两个的情况是怎么出现的,好像不可能啊,如果两个零点都在1,2之间的话,f2>0再答:对,我看错了再问:那就是有且只有一个?再答:是的

已知二次函数fx满足f(1+x)=f(1-x),且f0=0,f1=1,若fx在区间[m,n]上的值域是,则

已知二次函数f(x)满足f(1+x)=f(1-x),且f(0)=0,f(1)=1,若函数f(x)在区间[m,n]的值域为[m,n],则m=___,n=____.由f(1+x)=f(1-x)知二次函数f

罗尔定理的题 FX在区间(0,1)上连续可导,F(0)=F(1)=0,F(1/2)=1,证明存在T属于(0,1)满足F(

由拉格朗日中值定理知:存在x1∈(0,1/2),f'(x1)=[f(1/2)-f(0)]/(1/2)=2x2∈(1/2,1),f'(x2)=[f(1)-f(1/2)]/(1/2)=-2由导函数的中间值

设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)=-

∫xf(x)f'(x)dx=(1/2)∫xdf(x)^2=(1/2)xf(x)^2-(1/2)∫f(x)^2dx,代入上下限后=-1/2.