FX=X的平方-AXLNX
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:46:48
(本小题13分)(Ⅰ)由点(e,f(e))处的切线方程与直线2x-y=0平行,得该切线斜率为2,即f'(e)=2.又∵f'(x)=a(lnx+1),令a(lne+1)=2,a=1,所以f(x)=xln
2(x+根号x平方+1)大于等于0即可再一步一步拆根式注意根式内大于等于0但是整个函数的真数必须大于0.奇偶性的话看f(x)与f(-x)的关系相加为零为奇函数相等为偶函数.其余情况为非奇非偶函数.单调
f(-x)=-x/(-x)²+1=-f(x)奇函数设x1大于x2,f(x1)-f(x2)=-x1x2(x1-x2)/(X1²+1)(x2²+1)<0减函数
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
(1)f(x)=2x/(x^2+6)>k==>2x>k(x^2+6)kx^2-2x+6kk(x^2-2x/k+6)-2或x0得x^2+5x+6>0故(*)式中,k0所以5=-2/k,即k=-2/5(2
x0则有f(-x)=(-x)^2+三次根号下(-x)又f(x)为奇函数,所以f(-x)=-f(x)所以-f(x)=f(-x)=(-x)^2+三次根号下(-x)即f(x)=-x^2-三次根号下x所以有f
令x1<x2<0f(x2)-f(x1)=x2^2+1-(x1^2+1)=x2^2-x1^2=(x2+x1)(x2-x1)x2+x1<0,x2-x1>0∴f(x)=(x2+x1)(x2-x1)<0,得证
由题中条件得函数f(x)=x2-4x-7=(x-2)2-11则当x=2时,函数有最小值∵2∈【-4,4】∴f(x)min=f(2)=-11∵l2-(-4)l>l2-4l∴f(x)max=f(-4)=2
当对称轴x=a1,则f(x)在【-1,1】上递减,最小值为f(1)=3-2a当对称轴-1
f(x)=x^3+2x^2+x>=ax^2=>x^3+(2-a)x^2+x>=0对于R+恒成立因为x>0,所以只要g(x)=x^2+(2-a)x+1>=0对于R+恒成立抛物线g(x)当x>0的时候g(
fx=4cos²x-2+1-cos²x-4cosx=3cos²x-4cosx-1令t=cosx则-1≤t≤1即求[3t²-4t-1]的最值
fx=1/2x^2+lnx(a∈R,a≠0)f'x=x+1/x当x>0f'x>0当x
答:f(x)是R上奇函数:f(-x)=-f(x),f(0)=0x>0,f(x)=x^2-3x+2x<0,-x>0:f(-x)=(-x)^2-3(-x)+2=x^2+3x+2=-f(x
定义域为(-∞,+∞)值域为[-1,+∞)
1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这
cx=|fx|-gx=|x^2-1|-a|x-1|=0当x>1,a>2当0≤x
(I)∵函数f(x)=axlnx−bx(x>0,x≠1),∴f′(x)=−a(1+lnx)(xlnx)2+bx2,∵f(x)在x=e处的切线与x轴平行,∴f′(e)=0,即−a(1+lne)(elne
一看是偶函数所以讨论x>0情况就可以了(0,1)递减(1,无穷)递增因为是偶函数(无穷,-1)递减(-1,0)递增
解f(x)=-x²+4x+a=-(x²-4x)+a=-(x²-4x+4)+4+a=-(x-2)²+4+a对称轴为x=2,开口向下∴在x∈[0.1]上,f(x)是