fx=ln(1 x) e²在x=0的切线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:11:57
fx=ln(1 x) e²在x=0的切线方程
数学中的Ln值求导f(x)=ln(e^x+1)-ax (a>0)

lnx求导是1/x这里用到了复合函数求导,就是y=f(g(x))y'=f'(g(x))*g'(x)具体一下就是f'(x)=e^x/(e^x+1)-ae^x+1在分母上.e^x+1求导是e^x,在分子上

已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值

已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值(1)解析:∵函数fx=ln(x)-ax(a∈R)令a=2,则函数fx=ln(x)-2

已知函数Fx=e的x次方+2x的平方-3x.(1)判断Fx在区间【0,1】上极值点情形及个数

求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点

已知函数fx是定义在[-e,0) (0,e]上的奇函数 当x属于(0,e]时 fx=ax+Inx (1)求f(x)

(1)当x∈[-e,0)时,-x∈(0,e],f(x)=-f(-x)=-a(-x)-ln(-x)=ax-ln(-x)(2)当x∈[-e,0)时,f(x)=ax-ln(-x),f'(x)=a-1/x当a

设函数fx=x ln(e^x+1)-1/2x^2+3,x属于[-t,t],(t>0),若函数的最大值是M,最小值是m,则

求导得:f'(x)=ln(e^x+1)+[xe^x/(e^x+1)]-x=ln(e^x+1)-x/(e^x+1)=[1/(e^x+1)][(e^x)ln(e^x+1)+ln(e^x+1)-ln(e^x

已知函数fx=x-1/2ax^2-ln(1+x) . 求 1,fx的单调区间 2,若fx在[0,

解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调

函数fx=ln(2-x)+ax在(0,1]是增函数.

对函数求一次导,令其大于0,即1/(2-x)+a>0,a>1/(x-2)1/ax-2的最小值为-2,但取不到所以1/a

已知函数fx=ln ax+1 +1-x/1+x,x≥0,其中a>0,求1.fx的单调区间 2

已知函数f(x)=ln(ax+1)+(1-x)/(1+x),x>=0,其中a>0,(1)求f(x)的单调区间(2)若f(x)的最小值为1求a的取值范围f′(x)=[a/(a+1)]-[2/(1+x)&

已知函数fx=ln(x+1)-e^x 已知0≤x1<x2,求证e^(x2-x1)>1+ln[(x2

-10f(x)单调递增,所以f(x)的最小值=f(0)=1.0=f(0)=1f(x2-x1)=e^(x2-x1)-ln(x2-x1+1)>1,即e^(x2-x1)>1+ln(x2-x1+1),又x2-

已知函数fx=ln(x+√(x²+1)

1)因为√(x^2+1)>|x|,所以x+√(x^2+1)恒大于0所以定义域为R2)f(-x)=ln[-x+√(x^2+1)]=-ln1/[-x+√(x^2+1)]=-ln[√(x^2+1)+x]/[

已知函数fx=x-a(x+1)ln(x+1) 1.当a>0时 求fx极值点 2.当a=1时若

(2)f(x)=x-(x+1)ln(x+1)f'(x)=1-ln(x+1)-1=-in(x+1)令f'(x)=0-ln(1+x)=0得x=0f’(x)为递减函数在(-1/2,0)f'(x)>0在(0,

已知函数f(x)=ln(x+m),g(x)=e^x-1,F(x)=g(x)-f(x)在x=0处取得极值.

1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x

当x趋近于0时 lim e^x+ln(1-x)-1/x-arctanx=?

答案没有错!原式=lim(x->0){[e^x+1/(x-1)]/[1-1/(1+x²)]}(0/0型极限,应用罗比达法则)=lim(x->0){(1+x²)*[e^x+1/(x-

设函数f(x)=(1+x)的平方-2ln(1+x) 求fx的单调区间 0

f'(x)=2(x+1)-2/(x+1)-2x-a令f'=0解出a=2x/x+1因为0

已知函数f(x)=e^x-ln(x+1).

1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数f x=ln(1+x)-ln(1-x),求f x的定义域、值域 求使fx>0的x的取值范围

fx=ln(1+x)-ln(1-x)则f(x)的定义域即为1+x>01-x>0解得-11x>0综合定义域可知x的范围是(0,1)

已知函数fx=ln(1+x)+ax在定义域上单调递增

定义域x>-1f'(x)=1/(x+1)+a由题意,f'(x)>=0对于任意x>-1恒成立a>=-1/(x+1)恒成立令g(x)=-1/(x+1)(x>-1)显然g(x)=0