fx=-2sin^2-asinx a 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:03:16
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
1.(sina)^2+(sinb)^2-(sinasinb)^2+(cosacosb)^2=(sina)^2-(sinasinb)^2+1-(cosb)^2+(cosacosb)^2=(sina)^2
设函数fx=sin(φ-2x)(0
f(5π/12)=Asin(5π/12+π/4)=Asin(2π/3)=A*√3/2,(√为根号)=3/2A=√3f(θ)+f(-θ)=3/2√3sin(θ+π/4)+√3sin(-θ+π/4)=3/
诱导公式f(x)=(1+2cos²x-1)/(4cosx)+asin(x/2)cos(x/2)=(cosx)/2+a/2*sinx=(a/2)sinx+(1/2)cosx=√[(a/2)&s
解由题知A=3T=4(π/2-(-π/2))=4π又由T=2π/w故2π/w=4π故w=1/2故f(x)=3sin(1/2x+φ)其图像过点(-π/2,3)知3sin(1/2x(-π/2)+φ)=3即
fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai
fx=4cos²x-2+1-cos²x-4cosx=3cos²x-4cosx-1令t=cosx则-1≤t≤1即求[3t²-4t-1]的最值
原式=1/2COSX+asin(x/2)cos(x/2)=1/2COSX+a/2sinx=1/2(cosx+asinx)因为最大值是2所以(√1+a^2)/2=2a=+-√15
f(x)=(√3/2)sin2x-(1/2)[(cosx)^2-(sinx)^2]-1=(√3/2)sin2x-(1/2)cos2x-1=sin(2x-π/6)-1f(x)的最大值是0,最小值是-2,
f(x)=(1+1/tanx)*(sinx)^2-2sin(x+π/2)sin(x-π/4)=(1+cosx/sinx)*(sinx)^2+2sin(x+π/4)cos[(x-π/4)+π/2]=(s
T=2π/2=π[-1,1]最大值为1,最小值为-1
第一题A.第二题B
f(x)=sin^2x+asin^2(x/2)=sin^2x+a(1-cosx)=1-cos^2x+a-acosx1=-(cos^2x+acosx)+a+1=-(cos^2x+acosx+a^2/4)
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
(1)fx=sin(2x+φ)经过点(π/12,1)sin(π/6+φ)=1∴π/6+φ=π/2+2kπ,k∈Z∴φ=π/3+2kπ,k∈Z∵0
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=sin(2x+π/6)-cos2x+1所以为2π/2=πf(x)=根号3/2sin2x-(cos2x)/2+1=sin(2x-π/6)+1所以最大值为2,x=π/2+2kπ-π/6=π/3+