测量球的直径,设其服从[a,b]上的均匀分布,求球的体积的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:39:33
测量球的直径,设其服从[a,b]上的均匀分布,求球的体积的概率密度
设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c不等于零),试求随机变量Y的密度函数

不对的地方多多指教再问:第一步不太明白诶!再答:f(x)么?这是均匀分布的公式啊

测量球的直径,设其值服从[a,b]上的均匀分布,求球的体积的分布密度

所述,在[a,b]上的均匀分布使密度的x的函数是函数f(x)=1/(BA)×属于[b〕,其他时间间隔函数f(x)=0的那么,根据定义的要求E(X)E(X)=SX*F(X)DX的上限和下限是正无穷大和负

设随机变量x服从区间[a b]上的均匀分布 写出其概率密度函数f(x),并求其数学期望Ex,方差Dx.

F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/

设随机变量X 服从正态分布 N(μ,σ^2),y=ax+b 服从标准正态分布,则a=?,b=?

YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-

对圆的直径作近似测量,设测量值x在区间[a,b]上服从均匀分布,求圆面积S的数学期望

测量值x在区间[a,b]上服从均匀分布圆面积S的数学期望ES=π[Ex/2]^2=π[(a+b)/4]^2=π(a+b)^2/16再问:r的期望Er=(a+b)/4是不?再答:恩,就是这样

5.一零件的横截面积是圆,对截面的直径进行测量,设其直径X服从[0,3]上的均匀分布,求横截面积Y的数学期望

y=πx^2/4//:面积等于πR^2;E(Y)=(π/4)*E(X^2)(1)X的均值E(X)=(0+3)/2=1.5;X的方差D(X)=(3-0)^2/12=0.75;X的均方值:E(X^2)=D

如何测量球的直径

如果粗算的话,将球紧贴墙壁,然后找个平的合适的不宜变形的板贴在球的最外端和墙一起夹住球,用卷尺等测量工具测量墙体和板的距离

高等数学中概率统计对球的直径作近似测量,设其值均匀分布在区间[a,b]内,那么球的表面积S的期望值是:A:PI(b^2-

球的表面积是S=PI*D^2E(S)=E(PI*D^2)=PI*E(D^2)E(D^2)=D的期望的平方+D的方差.这个是公式D的期望的平方=((a+b)/2)^2=(a+b)^2/4D的方差=(b-

设球的直径服从[a,b]上的均匀分布,求其体积的数学期望.

设直径R,由题意得:F(R)=(R-a)/(b-a)f(R)=1/(b-a)体积的数学期望E=∫4πR³/3(b-a)dR=πR^4/3(b-a)下限b,上限a可得E=π(b²+a

设总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本,试问n=(x1-x2)^2/(x3+x4)^2服从什么

服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是

设圆的直径X在【1,3】上服从均匀分布,求圆面积的数学期望和方差

EX=(a+b)/2->Er=[(1+3)/2]/2DX=(b-a)^2/12->Dr=[(3-1)/2]^2/12ES=π[Er]^2=π[(1+3)/4]^2=π16/16=πDS=π[Dr]^2

随机变量X的数学期望E(X)是平均值吗?他是怎么样的平均值?设X服从[a,b]上的均匀分布,则X的史学期望值EX

是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么

对圆的直径做近似测量其直径均匀分布在区间[a,b]上,求圆的面积的数学期望

圆的面积是S=πr^2,而其中π是常数,所以其实就求出r^2在[a,b]上的期望就可以了,然后再乘以π.而r^2在[a,b]其实就是求平均值.总的来说就是对πr^2/(b-a)求积分

设对圆片直径进行测量,测量值X服从[5,6]上的均匀分布,求圆片面积Y的概率密度.

圆面积公式Y=πX^2/4(注意X是直径)X服从[5,6],所以Y=πX^2/4是一对一关系,即一个X对应一个Y,一个Y也对应一个X,这种情况下才能用除以导数的方法求新密度x=根号(4y/π)dx/d