泰勒展开式 (1 x^2)^1 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:29:46
sinx求2n+1次导是cosxcosx求2n+2次导是cosx(注意前面的系数,是否有-1)
直接在点处求n阶导数代入就行了
(1+z+z^2/2!+...+z^n/n!+o(z^n))/(1-z)展开式应该就是这样吧,看你要保留到几项了.视你的具体情况而定.再问:答案是1+z+z2次方+z3次方…………再答:那这样不对啊(
C(8,4)*(-1/2)^4=35/8
先求ln(1+x)在0处的泰勒展式,这个你不能不会.然后把式子里面的x替换成x^2就好了.看到我得先后顺序没?你看看书.,上面得例题,老兄“他展开时的各级导数不一样的”发现你似乎对泰勒级数不太了解.啊
正好分子中导数值和分母的阶乘约了啊.lz写出前几项归纳下看看.
(x-1/x)2n展开式的第r+1项是C2n(r)*x^(2n-r)*(-1/x)^r=C2n(r)*x^(2n-r-r)*(-1)^r令2n-r-r=0,得r=n所以,常数项是C2n(n)*(-1)
令t=x-2,则x=t+2,f(x)=(t+4)^(1/2),展开成关于t的式子即可f(x)=2(1+t/4)^(1/2)因为(1+x)^μ=1+μx+(μ(μ-1)/2!)x^2+(μ(μ-1)(μ
(arctan(x))'=1/(1+x^2)这个导数可以用基本公式1/(1+x)来展开
我晕,高等代数上不是经常有这个吗?
是公式的余项也就是误差公式是说比x-x0的n次方更高阶的无穷小量也就是当x-x0趋于0时Rn(x)/[(x-x0)^n]也趋于0
f(x)=x^2就是f(x)在x=0处的泰勒展开式.因为:f(0)=f'(0)=f'''(0)=f'''...(0)=0;只有:f''(0)=2≠0而泰勒展式为:f(x)=f(0)+f'(x)x+f'
泰勒展开式一般形式:f(x)=f(x0)+f(x0)'(x-x0)+[f(x0)''/2!](x-x0)^2+···+[f(x0)^(n)/n!]*(x-x0)^n+Rn(x)Rn(x)=[f(sx)
首先e^z的展开式:e^z=1+z+z^2/2!+z^3/3!+...+z^n/n!+...把z=(z/z-1)代入公式即可得到:e^(z/z-1)=1+(z/z-1)+(z/z-1)^2/2!+..
ln(1+x)在x=0处的展开式是ln(1+x)=x-x^2/2+x^3/3-x^4/4+.+(-1)^(n+1)*x^n/n+.(-1再问:e..是的我二阶导求导求错了。另外问一下,如果遇到求f(0
由NEWTON2项式定理亦知常数项为C12(4)*(x^2)^4*(-1/x)^8,所以常数项为C12(4)C12(4)表示下标12上标为4的组合数.
因为1/(1+x)=1-x+x^2-x^3+...+(-1)^(n-1)x^n+...所以1/(1+2x)=1-(2x)+(2x)^2-(2x)^3+...+(-1)^(n-1)(2x)^n+...=