波源做谐振动,振幅为a,周期为100分之1秒,u=400m s
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:17:00
弹簧振子达到最大位移时的弹性很能即为这个系统的总能量.此时E=(kA²/2)当位移为振幅的一半时的弹性势能为kx²/2=1/4×(kA²/2),根据机械能守恒,运动为3/
4A再问:为什么,怎么算再答:作图就可以确定1周期内振子完成一次全振动,通过路程必然是4A再问:怎么做。再答:借用网上的图 这个图上的振子从平衡位置开始完成一次全振动,通过路程将为OA--A
貌似是0,两波的相位总是相反的
复合摆问题,平衡位置速度最大.所以平衡位置是小球静止时的位置,此位置合外力=0a=0
总能量为kA^2/2,所以此时势能为kA^2/2-kA^2/6=kA^2/3
1.π2.3/2π3.1/3π利用余弦函数图像性质画出余弦函数图像,第一题中就是余弦函数值等于-1,所以初相位为π第二题中就是函数值为0且向正方向运动,所以相位为3/2π.第三题中,函数值为1/2且向
如果原来是在“最大位移”、“最小位移”(平衡位置),那么,经半个周期后,弹簧长度是相等不变的.但,如果是其它“任意时刻”,那么弹簧的长度就不等了.
A、B由图看出,两列波同时开始传播,由波形可知,S1开始振动方向向下,S2开始振动方向向上,所以图中A、B、C三点都是振动减弱点,振幅都为零.故A正确,B错误.C、D画出再经过T4后,两列波单独传播时
C对.为方便理解,设质点的振动方程是 X=A*sin(2π*t/T) ,X轴的正方向是向右的,质点经过原点向右运动时为计时起点.在 t=t1时,质点第一次到达X=A/2处,则 A/2=A*sin(2π
(a)振动方程为x=ACOS(2pit/T-pi/2);(b)振动方程为x=ACOS(2pit/T+pi/3);再问:详细过程再答:这实际上只是一个已知初始条件,求初位相的问题!!很简单的!只是某些符
如图所示是质点做简谐运动的图像,则质点振幅是___2cm____,周期是___4s_____,频率为____0.25HZ____,振动图像是____平衡位置____开始计时的.
我好久没上知道了,是因为有问题才来的,看到这貌似是个我能解决的问题,我就试试哈.我呢~高中学习委员,还算可以吧,现在大一,临床的本硕,信得过我就看看,不一定你看的懂啊:首先频率是100赫兹那么周期就是
到达距波源8m处恰好为波形传递两个周期,8m处点处于振动原点并向正方向运动,与波源处振动方程相同.振动方程y=Asin(200pi*t),A为振幅无法确定.距波源9M和10M的两点相位差pi/2
首先说下,周期的单位是秒,别的直接代方程, 代入参数就可以算了
同意楼上答案:势能和位移大小成正比位移现在是1|2,势能为振幅处1|4每点处能量守恒振幅处E1=E总E总=E动+E势1\2处E势=1|4E总则E动=3|4E总∴E动:E势=3:1
1\再写上初相位φ=0的简谐运动的方程y=AsinWtW=2π/T=π代入数据y=0.06sinπt始计时(t=0)时,质点恰好处在负向最大位移处把y=sinπt图象向右移动π/2得y=0.06sin
10√3sin(w*t)+A*sin(w*t+a)=20sin(w*t+π/6)A=10cm
根据题意,设该物体在ts时刻的位移为ycm,则∵物体向右运动到距平衡位置最远处时开始计时,振幅为3cm,∴当t=0时,y达到最大值3.因此,设y=3cosωt,∵函数的周期为3s,∴2πω=3,解之得
1.Asin(wt)=0.01*sins(200*pi*t)A是振幅,w是圆频率,可以根据2*pi/T求得,T是周期2.波动方程可以写组Asin(wt-kx)=0.01*sin(200*pi*t-pi