泊松分布X²的期望
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:24:14
P{X=k}=e^(-a)a^(k)/k!1=sum_{k=0->正无穷}P{X=k}=sum_{k=0->正无穷}e^(-a)a^(k)/k!E{1/(X+1)}=sum_{k=0->正无穷}e^(
E(5X-1)=5EX-1=9->EX=λ=2期望的基本性质,和泊松分布的期望公式而已.
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^
X在(0,4)均匀分布.期望为2.
直接背啊E(X)=D(X)选D再问:为什么?再答:你看数学期望那一章,直接给出来了
E(2X-3)=2EX-3.X服从泊松分布,则EX=3.所以EZ=3.
由E[(X-2)(X-3)]=E(x^2-5x+6)=E(x^2)+E(-5x+6)由泊松分布的数学期望公式得E(-5x+6)=-5E(x)+6=-5入+6E(x^2)=入^2+入则E[(X-2)(X
E(X)=2E(3X-2)=E(3X)-E(2)=3E(X)-E(2)=3*2-2=4
再问:能不能解释下呢,谢谢!再答:
有一个公式,E(1/(x+1))等于1/(x+1乘以泊松分布的密度函数从0到正无穷的求和,应该能解出来再问:不知道你说的什么公式--再答:参照概率论与数理统计书上泊松分布的期望的推导过程,将i换成1/
poisson(a),即V满足λ=a的泊松分布,P(X=k)=λ^k*e^(-λ)/k!泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.泊松分布适合于描述单位时间内随机事件发生的次数.
X~P(λ)期望E(X)=λ方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!可知P(X=0)=e^(-λ)再问:那么P(X>1)之类的怎么求呢??再答:可以用积分来求,不知道你
如果X~P(a)那么E(x)=D(x)=a;证明过程实在不好写(很多符号)先证明E(x)=a;然后按定义展开E(x^2)=a^2+a;因为D(x)=E(x^2)-[E(x)]^2;得证.典型的有:0-
lambda
这个表明,随机变量X服从泊松分布,求X的函数x^2的期望.用随机变量函数的期望公式求解即可.解答见下图:
泊松分布P(X=k)=e^(-λ)*λ^k/k!期望和方差均为λEX=λ=5所以P(X=k)=e^(-5)*5^k/k
P(X=k)=(λ^k/k!)*e^(-λ)E(X)=λP(X=1)=(λ^1/1!)*e^(-λ)=λ*e^(-λ)P(X=2)=(λ^2/2!)*e^(-λ)=0.5λ^2*e^(-λ)λ*e^(
为那个常数拉母它