F(x)=xln(x a)不存在极值点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 19:34:55
1.当x>0时,-x0得x>1/ef'(x)
首先,函数在f(0)处是连续的f'(0+)=lim(x→0+)[f(0+)-f(0)]/(x-0)=lim(x→0+)f(0+)/x=lim(x→0+)arctan(1/x)=π/2f'(0-)=li
f(3)=3*ln1-3=-3
定义域(0,+∞)f'(x)=1+lnx令f'(x)=0得x=1/ef''(x)=-1/x,f''(1/e)+∞}xlnx=+∞表明函数没有水平渐近线;lim{x->0+}f(x)=lim{x->0+
事实上,对于第二种情况,n不是一个无限大,f(nπ)=nπ*sinnπn为正整数,实际上此时的f(x)为原来函数的一个子数列,它的每一项都是零,可以试一试,n=100时,为100π*0=0,而极限存在
对数有意义,x-2>0x>22
就是在0处展开的泰勒展式啊,但是每一项的导数带入0都是0,所以只有f(x)=r(x)其中r(x)=o(x^n)即x^n的高阶无穷小.
由题设条件可知limf(x)存在,不妨设limf(x)=A,则f(x)=xln(2-x)+3x^2-2A注意到常数的极限是它本身,所以对上式取极限可得A=limf(x)=1*0+3-2A解得limf(
∵幂函数f(x)=xa的图象过点(12,22),∴(12)α=22,解得α=12,∴函数f(x)=x12;∴不等式f(|x|)≤2可化为|x|12≤2,即|x|≤2;解得|x|≤4,即-4≤x≤4;∴
lim(x->0)(x-sinx)/[xln(1-ax²)]=lim(x->0)(x-sinx)/[x·(-ax²)]=-1/alim(x->0)(x-sinx)/[x³
Ay=3^X是指数函数函数单调递增所以3^X=10存在且只有一个解
y=x(lnx)^3y'=x'(lnx)^3+x*[(lnx)^3]'=(lnx)^3+x*3(lnx)^2*(lnx)'=(lnx)^3+3x(lnx)^2*1/x=(lnx)^3+3(lnx)^2
解 (1)f(x)的定义域为(0,+∞),f′(x)=ln x+1,…(2分)令f′(x)=0,得x=1e,当x∈(0,+∞)时,f′(x),f(x)的变化的情况如下:x(0,1e)1e(1
F’(X)=1×ln(1+X)+X×1/(1+X)-a=ln(1+X)+X/1+X-a
求导函数,可得f'(x)=ln(ex+1)-xex+1=1ex+1[exln(ex+1)+ln(ex+1)-lnex]又因为当x∈[-t,t]时,ex+1>1>0,又因为ln(ex+1)-lnex>0
以下答案.望楼主思考一番,自己下笔,我的答案仅供参考,祝楼主学习愉快.
(1)所给函数f(x)=((2a+1)/a)-(1/(xa^2))=2+1/a-1/a^2*1/x,是b-c/x(b、c>0)的形式,增减性用定义自己算一下应该不难.(2)根据单调性有,f(m)=m,
xw6 =x(6)*pi/180; % 将第6个变量付给工作变量,以作弧度转换x的长度是1,而这里
只需证明x>0时1/(x+1)g(0)=0所以ln(1+t)>t/(1+t)1/x>0则ln(1+1/x)>x/1+x
由题意f(2)=2a=22=2−12,所以a=-12,所以f(x)=x−12,所以f(4)=4−12=12故答案为:12