求隐函数x^2 y^3-2xy=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:20:03
由X+Y=3XY可得X+Y-XY=2XY,用X+Y-XY替换分母中的2XY,所以(2X+2Y-XY)/(X+Y+2XY)=(2X+2Y-XY)/(2X+2Y-XY)=1
-xy(x^2y^5-xy^3-y)=-(xy^2)^3+(xy^2)^2+xy^2=-(-2)^3+4-2=8+4-2=10
不对.方程同时对X求导有3x^2+3y^2y'=4y+4xy'得到y'=(4y-3x^2)/(3y^2-4x)x=2时y=2y'(2)=(4*2-3*2^2)/(3*2^2-4*2)=-1
求dy/dx,所以把y看成x的函数等式两边对x求导便得(y²)'+(xy)'+(3x)'=0即2ydy/dx+y+xdy/dx+3=0=>dy/dx=-(y+3)/(2y+x)
设a=xy,b=x+y.f(xy,x+y)=x^2+y^2+2xy-2xy=(x+y)^2-2xy把a,b带f(a,b)=b^2-2a所以f(x,y)=y^2-2x同理f(x+y,xy)=x^2+y^
fx=x-y+3=0fy=-x+2y=0解得唯一驻点(-6,-3)A=fxx=1B=fxy=-1C=fyy=2AC-B²=1>0,A>0所以取极小值f(-6,-3)=-9
由fx(x,y)=2x-6y+18=0fy(x,y)=3y^2-6x-39=0解得驻点有(-6,1)(-6,5)(6,1)(6,5)二阶偏导fxx(x,y)=2fxy(x,y)=-6fyy(x,y)=
因为xy/x+y=3,所以xy=3(x+y)(1)将式子(1)代入求值式子:2x-3xy+2y/-x+3xy-y=2x-9x-9y+2y/-x+9x+9y-y=-7x-7y/8x+8y=-7/8
3/(x-y)=1/xyx-y=3xyy-z=-3xy原式=[(y-x)-2xy]/[2(x-y)+3xy]=[(-3xy)-2xy]/[2(3xy)+3xy]=-5xy/9xy=-5/9
3/5再问:详细过程呢再答:y-x=3xyx-y=-3xy代入得:(-6xy+3xy)/(-3xy-2xy)=-3/-5=3/5
xy/x+y=3即:xy=3(x+y)(2x-3xy+2y)/(-x+3xy-y)=[2(x+y)-3xy]/[3xy-(x+y)]=[2(x+y)-9(x+y)]/[9(x+y)-(x+y)]=-7
第一步方程两边对x求导记y+xy'-y'/y=2x第二步解出y'记y'=(2xy-y^2)/(xy-1)
答:1)y/x=ln(xy^2)两边求导:y'/x-y/x^2=[1/(xy^2)]*(y^2+2xyy')(xy'-y)/x=(y+2xy')/yy'-y/x=1+2xy'/y(1-2x/y)y'=
分别求X,Y的偏导3x^2-3y=03y^2-3x=0x=0x=1y=0y=1代回去就是
∵x-y/xy=3∴x-y=3xy2x+3xy-2y/x-2xy-y=[2(x-y)+3xy]/[(x-y)-2xy]=(6xy+3xy)/(3xy-2xy)=9xy/(xy)=9
(Y-X)÷(XY)=3可变形为Y-X=3XY(2X+3XY-2Y)÷(X-2XY-Y)=(2X-2Y+3XY)÷(X-Y-2XY)={2(x-y)+3xy}÷(X-Y-2XY)={2(3xy)+3x
令f=x^3+y^2+2xy+3x+5y+1则df=3x^2dx+2ydy+2xdy+2ydx+3dx+5dy=0即(3x^2+2x+3)dx+(2y+2x+5)dy=0于上dy/dx=-(3x^2+
原式=-xy²(x²y^4-xy²-1)∵xy²=-2原式=2((-2)²-(-2)-1)=10
答:f(x,y)=3xy/(x^2+y^2)f(y/x,1)=3*(y/x)*1/[(y/x)^2+1^2]=(3y/x)/[(y^2+x^2)/x^2]=3xy/(x^2+y^2)=f(x,y)x≠