f(x)=5 lnx-kx x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:15:23
x>0
①f'=1/x-a/x^2=(x-a)/x^2定义域为x>0.当a0,g(x)单增;g''=-1/x^2
怎么求导?当然是记常用函数的求导公式啊,记住公式那就简单了,1/x
令t=(1-lnx)/(1+lnx)得lnx=(1-t)/(t+1)x=e^[(1-t)/(t+1)]所以f(t)=(1-t)/(t+1)*e^[(1-t)/(t+1)]即f(x)=(1-x)/(1+
(1-lnX)∕X^2
解题思路:(I)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间.(Ⅱ)当a=1/2时,g(x)=x(f(x)+1)=x(lnx-1/2x+1)=xlnx+x-1/2x2,(x>1)
根据导数的定义做:f'(x)=lim[f(x+△x)-f(x)]/△x(△x-->0)=lim[In(x+△x)-Inx]/△x=lim[In(x+△x/x)]/△x=lim[In(1+△x/x)]/
记y=(lnx)^x两边取对数,得lny=xln(lnx)两边同时对x求导,有y′/y=ln(lnx)+1/lnx则y′=(lnx)^x[ln(lnx)+1/lnx]
[(lnX)^5]'=5(lnX)^4(lnX)'=5(lnX)^4/X
(1)f'(x)=(1-lnx)/x²令1-lnx=0,得:x=e由f'(x)>0,得:0
1,证:f(x)=x-lnx=ln[(e^x)/x]当x>=e时:lnx>=1,f(x)-lnx=x>0,f(x)>max{lnx,1}成立.当0max{lnx,1}|x-1/2-lnx|>max{l
1,f(x)=lnx+x^2x>0g(x)=f(x)-ax=lnx+x^2-axg`(x)=1/x+2x-a>01/x+2x>a1/x+2x>=2√2x(1/x)=2√2a
是想问怎么对x^lnx求导是吗?任何一个数T都可以写成T=e^(lnT),就用这个公式,令T=x^lnx则T=e^(lnT)=e^[ln(x^lnx)]=e^[(lnx)^2]再对它求导:T'={e^
再问:再问:再答:看不清再问:再问:第一题再问:再问:第四题
求导f"(x)=1/x
f'(x)=(1/x*x-lnx*1)/x²=(1-lnx)/x²0
1)求导得h'(x)=(1-lnx)/x^2所以当x=e时h(x)有最大值1/e2)依题整理得lnx+x+12/x>=a(因为x>0,所以可以直接除)令g(x)=lnx+x+12/xg'(x)=(x^
f(x)=(xlnx)^(-1)所以f'(x)=-1*(xlnx)^(-2)*(xlnx)'(xlnx)'=x'lnx+x*(lnx)'=lnx+x*1/x=lnx+1(xlnx)^(-2)=1/(x
∫(f'(lnx)/(x√f(lnx)))dx=∫(f'(lnx)/√f(lnx)d(lnx)=∫[f(lnx)]^(-1/2)df(lnx)=2√f(lnx)+C
f(e^x)=e^2x+5e^xf(x)=x^2+5xdf(lnx)/dx=d[(lnx)^2+5lnx]dx=d[(lnx)^2]/dx+d(5lnx)dx=(2lnx)*d(lnx)/dx+5d(