求证:双曲线xy=1上任意一点处的切线与坐标轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:29:34
求证:双曲线xy=1上任意一点处的切线与坐标轴
超难题 求椭圆x^2+4y^2=1上任意一点到双曲线xy=1上任意一点之间最小距离

椭圆x²+y²/(1/2)²=1,长半轴为1短半轴为1/2,同时把长半轴和短半轴扩大n倍,使其与双曲线xy=1相切,x²/n²+y²/(n/

求证 双曲线xy=1上的任意一点处额切线与两坐标轴构成的三角形面积为定值

设P是双曲线xy=1上任意一点,其坐标为P(x0,y0),经过P点的切线方程为y=kx+b,双曲线化为y=1/x形式,y对x的导数为y'=-1/x^2,在P点处导数为-1/x0^2,切线方程为:(y-

求证双曲线xy=k(k为非零常数)上任意一点处的切线与两坐标轴围成的

y=k/x设切点(m,k/m)y'=-k/x²x=my'=-k/m²切线y=-k/m²(x-m)+k/m=(-k/m²)x+2k/m与坐标轴交点(0,2k/m)

已知双曲线C:四分之x平方-y平方=1,P为双曲线C上任意一点. 1求证:点P到双曲线C的两条渐近线的距离的...

(1)设点P(x,y),则渐近线方程为y+x/2=0,y-x/2=0,d1d2=|y+x/2|/根号下(1+1/4)*[|y-x/2|/根号下(1+1/4)]=[y^2-(x/2)^2]*(4/5)=

过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值

设点P(x0,y0)渐近线方程为y=±bx/a点Q(-ay0/b,y0),R(ay0/b,y0)向量PQ*向量PR=((-ay0/b)-x0,0)((ay0/b)-x0,0)=-(ay²0/

已知双曲线C:x^2/4-y^2=1,P是C上任意一点,求证:点P到双曲线C的两条渐近线的距离的时

设P(x0,y0)是双曲线上任一点,则x0^2/4-y0^2=1,两边同乘以4,则x0^2-4y0^2=4,所以|4y0^2-x0^2|=|-4|=4.

求证双曲线xy=a²;上的任意一点的切线与平面直角坐标系两坐标轴围成的三角形的面积为定值

设P(H,V)是双曲线xy=a²上的一点.y=a²/xV=a²/Hy’=-a²/x²在P点斜率:y’(P)=-a²/x²=-a&s

已知双曲线xy=1,过其上任意一点P作切线与x轴,y轴分别交于Q,R.

(1)曲线xy=1,即y=1/x,曲线上任意一点P(xo,yo)的斜率为y'=-1/xo²,则切线方程为y=-1/xo²(x-xo)+yo,其中yo=1/xo,即切线方程为y=(-

已知双曲线xy=1,过其上任意一点P作切线与x轴,y轴分别交于Q,R.求证:1.P平分QR 2.△OQR的面积是定值

函数y=1/x求导为-1/x^2,设切点为(t,1/t),则有切线方程为:y=-(x-t)/t^2+1/t而op直线方程为:y=x/t^2因为两直线斜率互为相反数,故角POQ=角PQO所以PO=PQ同

已知双曲线xy=1,过其上任意点P作切线交坐标轴x/Y于Q.R,求证三角形OQR的面积是定值

设过P的直线是Y=KX+B,又P是双曲线上的点Y=1/X,1/X=KX+B,即KX2+BX-1=0,又直线是切线机只有一个交点,即有一个解则b2+4B=0,直线围成的面积B*(-B/K)/2=-B2/

双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|P

令PF1=m,PF2=nm-n=2aPF1F2=30所以n/m=sin30=1/2m=2nn=2a,m=4a所以P(c,2a)c^2/a^2-4a^2/b^2=1tan30=PF2/F1F2=2a/2

双曲线x²-y²;=a²;的两个焦点F1,F2,P为双曲线上任意一点,求证:|PF1|,|

设p坐标为(x,y)根据焦半径公式,PF1的长度为a+ex,PF2长度为ex-a,PO长度平方为x平方+y平方,那么PF1乘以PF2等于2乘以x^2-a^2,而x^2+y^2化简,可以用x^2的代数式

双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1||PO||PF2

令PF1=m,PF2=nm-n=2aPF1F2=30所以n/m=sin30=1/2m=2nn=2a,m=4a所以P(c,2a)c^2/a^2-4a^2/b^2=1tan30=PF2/F1F2=2a/2

求证双曲线x^2/a^2-y^2/b^2=1上任意一点p到两条渐近线距离之积为定值

设P(x,y)x^2/a^2-y^2/b^2=1b^2*x^2-a^2*y^2=a^2*b^2双曲线的渐近线bx±ay=0设P到两渐近线距离为d1d2d1=|bx+ay|/√(a^2+b^2)d2=|

求证:双曲线上任意一点到两条渐近线的距离的乘积是一个定值!

设P(x,y)x^2/a^2-y^2/b^2=1b^2*x^2-a^2*y^2=a^2*b^2双曲线的渐近线bx±ay=0设P到两渐近线距离为d1d2d1=|bx+ay|/√(a^2+b^2)d2=|

求证:双曲线上任意一点到两条渐近线的距离的乘积是一个定值.

x²/a²-y²/b²=1渐近线y=±b/ax即bx+ay=0和bx-ay=0假设双曲线上的点P(m,n)令m=asec²θ则y²/b&su

求证:双曲线上任意一点到它的两条渐沂线距离之积为常数

参数方程法利用双曲线的参数方程:x=secty=tgt而两条渐近线的方程分别为bx+ay=0bx-ay=0故到bx+ay=0的距离为|absect+abtgt/(a^2+b^2)^0.5|到bx-ay

求证:等轴双曲线上任意一点到两渐近线的距离之积食常数

证明:等轴双曲线的方程为:x^2/a^2-y^2/a^2=1,即x^2-y^2=a^2=k,k为常数,两条渐进线方程分别为x+y=0和x-y=0,设双曲线上任意一点M(x0,y0),点M到两渐进线的距

求证:等轴双曲线上任意一点到两渐近线的距离之积是常数

请参照我下面的回答看看你的问题吧设等轴双曲线的方程为:x²/a²-y²/a²=1,即x²-y²=a²两条渐进线方程分别为y=-x=

求证:等轴双曲线上任意一点到两渐近线的距离之积是常数。

解题思路:(1)写出等轴双曲线方程,及其渐近线方程。(2)设动点坐标,应用点到直线的距离公式证明解题过程:附件