求证,当n为正整数时,n的三次方-n的值必是6的倍数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:46:55
求证,当n为正整数时,n的三次方-n的值必是6的倍数
当n正整数时,求证999的n次方-999是37的倍数

999=37*27(999的n次方-999)/37=[999^(n-1)-1]*999/37=[999^(n-1)-1]*27n为整数时,上述两项都为整数,因此999的n次方-999是37的倍数

证明1.当n为正整数时,n∧3-n必是6的倍数.

1.n∧3-n=n(n^2-1)=n(n+1)(n-1)-(1)-n为正整数,则n,n+1,n-1中必有一个3的倍数-(2)-n为正整数,则n,n+1中必有一个2的倍数所以n(n+1)(n-1)为6的

证明:当N为大于1的正整数时,N的三次方-N的值必是6的倍数

N^3-N=N(N-1)(N+1)连续三个整数相乘,其中至少有一个偶数,至少有一个3的倍数,所以能被6整除.

已知函数f(x)=lnx 求证:当i从1到n时,1/i的总和大于ln(1+n) (n为正整数)

采用数学归纳法1.当i=1时,1>ln2成立2.假设当i=n-1时成立,即1+1/2+.+1/(n-1)>lnn成立当i=n时,1+1/2+.+1/(n-1)+1/n>lnn+1/n要想证明1+1/2

证明当n为正整数时,n的三次方+3乘(n的平方)+2n所表示的数必能被3整除

n的三次方+3乘(n的平方)+2n=n*(n+1)(n+2)其中必有一个为3的倍数,所以n的三次方+3乘(n的平方)+2n所表示的数必能被3整除

探究:当n为正整数时,根号n的平方+n的整数部分是多少?

√n^2=n<√n^2+n<√(n^2+n+1/4)=n+1/2故整数部分就是n

求证,当n为正整数时,(2n-1)的平方减49能被4整除?

原式可化解成4n^2-4n+1-49=(2n+6)*(2n-8)=2*(n+3)*2*(n-4)=4(n+3)(n-4)所以当n为正整数时,(2n-1)的平方减49能被4整除希望能够帮上你!

当n为正整数时,函数N(n)表示n的最大奇因数……

求解过程也非常简单的,你可以知道,奇数的最大奇因数是因本身,这个是一个不变的道理,正是基于此点的考虑,可以将Sn进行一次的重组,重组当然就是重新组合了!Sn=N(1)+N(2)+N(3)+N(4)+.

求证:当n为正整数时.n的立方减n必是6的倍数

n^3-n=n(n^2-1)=n(n+1)(n-1)就是(n-1)*n*(n+1)看出来了吗?连续的三个数相乘的结果肯定是6的倍数.因为这三个数中一定有至少一个是2的倍数,有一个是3的倍数.结果一定是

证明:当N为正整数时,N*N*N-N的值必是6的倍数

N*N*N-N=N*(N*N-1)=(N-1)*N*(N+1)即等于相邻的三个数相乘,可知其中至少有一个偶数和一个三的倍数,故必是6的倍数

利用分解因式说明:当n为正整数时,n的三次方减n的值必是6的倍数?

n^3-n=n*(n^2-1)=n*(n+1)*(n-1)是连续3个整数的乘积由于连续两个整数对2的余数必取遍0和1,即连续2个整数中至少有一个是偶数,同理连续3个整数中至少有一个是3的倍数,故连续三

X^n+Y^n=Z^n,其中XYZn为正整数,求证当n>2时,XYZ无正整数解.

据说1995年已经被安德鲁.怀尔斯解决了,论文有200页.用的理论是椭圆曲线和模型式.我来水一下,说不定就是费尔玛当年的绝妙的想法:假设X^n+Y^n=Z^n,其中XYZn为正整数,当n>2时,XYZ

当n为正整数时,(n+1)的平方-n的平方=?

当n为正整数时,(n+1)的平方-n的平方=n²+2n+1-n²=2n+1

证明:当n为正整数时,n^3-n的值必是6的倍数

数学归纳法(1)当n=1时1^3-1=0能被6整除当n=2时2^3/2=6能被6整除(2)假设当n=k时(k为正整数)k^3-k能被6整除则当n=k+1时(k+1)^3-(k+1)=(k+1)[(k+

求证:当n为正整数时,n^3-n的值必是6的倍数

n^3-n=n(n^2-1)=n(n+1)(n-1)因为n为正整数所以原式为三个连续的自然数相乘,所以值必为6的倍数

说明当n为正整数时,n的三次方-n的值必定为6的倍数

1、3就是反例再问:是减n再答:原式=n(n+1)(n-1),为连续的三个正整数之积,必有一个数是2的倍数,一个是3的倍数,又2与3互质,所以原式是6的倍数。

试说明当n为正整数时,n³-n的值必是6的倍数

(n*n*n-n)=n(n*n-1)=n(n+1)*(n-1)以上算式等于(n-1)*n*(n+1)即等于三个连续正整数的积三个连续正整数中至少包含一个数字为3的倍数,同时包含一个数字为偶数即:(n-

证明当n为正整数时,n的3次方-n的值必是6的倍数

n的3次方减n=(n-1)n(n+1)是3个连续的整数相乘而6=2*33个连续整数必定有偶数且有3的倍数因此必定能被6整除!

当n为正整数时,根号n²+n的整数部分是n

N等于1,根号2大于1小于2再问:34的整数部分,小数部分?!!

当n为正整数时,n的三次减n为6的倍数

简要证明思想如下:n^3-n=n(n^2-1)=n(n+1)(n-1)=(n-1)n(n+1)由此知若n=1则该式=0是6的倍数若n>1则该式为三个连续正整数乘积在3个连续正整数中至少有1个是偶数即可