求解下列微分方程dy dx=2根号(y x) y x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:03:10
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
x^2*dy/dx=xy-y^2dy/dx=y/x-y^2/x^2u=y/xy=xuy'=u+xu'代入:u+xu'=u+u^2xu'=u^2du/u^2=dx/x-1/u=lnx+lnCCx=e^(
设u=x+ydy=du-dx原式可化为du/dx-1=(a/u)^21/(1+(a/u)^2)*du=dx两边积分得∫1/(1+(a/u)^2)du=x+c∫u^2/(u^2+a^2)du=x+c∫(
点击放大,如果看不清,可以将点击放大后的图片临时copy下来,会非常清晰:
原式化为dy/dx=1/2-x/2y令u=y/x,y=ux则:dy/dx=xdu/dx+u代回有xdu/dx+u=1/2-1/(2u)du/dx=(1/2-u-1/(2u))/xdu/(1/2-u-1
直接积分就好了t=1/2*x^2+xy+c,c为常数
变量分离dy/(ylny)=dxd(lny)/lny=dx(lny)^2/2=x+c
这是个可分离变量的微分方程dT/dt+C*T=E-B*T^4dT/dt=E-B*T^4-CTdT/(E-B*T^4-CT)=dt两边积分呀那个E、B、C是常数增加了解题的难度.
两天同乘以e^(∫P(x)dx)则左边变成[ye^(∫P(x)dx)]',右边是Q(x)e^(∫P(x)dx)所以ye^(∫P(x)dx)=∫Q(x)e^(∫P(x)dx)dx+Cy=e^(-∫P(x
ydx-xdy=x^2sinxdx-(xdy-ydx)/x^2=sinxdx-d(y/x)=sinxdx两边积分:-y/x=-cosx+C即y=x(cosx+C)
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y
解法一:(全微分法)∵y'-2y/x=x^3==>xy'-2y=x^4==>xdy-2ydx=x^4dx==>x²dy-2xydx=x^5dx==>x²dy-yd(x²)
1dy/dx=(x+y)/(x-y)y=xudy=xdu+udxxdu+udx=(1+u)/(1-u)dxxdu=[(1+u)/(1-u)-u]dx(1-u)du/(1+u^2)=dx/xarctan
2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5
令u=x-y+1则,u'=1-y'=1-u²这是一个可分离变量的微分方程,可以方便求解了再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以
令u=x-2,v=y+3,du=dx,dv=dy,dy/dx=dv/du=((2u+v)/u)^2=4+4v/u+v^2/u^2Z=v/u,v=zu,dv=udz+zdu,dv/du=udz/du+z
两边同时对y积分得d(yy')=d(0.5y^2(lny-0.5))y'=0.5ylny-1/4y+c1/y积分得y=1/4y^2lny-1/4y^2+C1lny+C2
方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=