f(x)=2 (e^x e^-x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:45:37
f(x)=2 (e^x e^-x)
(xe^x)'-(e^x)'是怎么推到xe^x

前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x

已知函数f(x)=xe次方(e为自然对数的底)求函数f(x)的极值

f'(x)=e^x+xe^x=(1+x)e^x=0x=-1因此x=-1时有极小值f(-1)=-1/e

f(2x+1)=xe^x,求定积分f(t)dt

令:t=2x+1,则:dt=2dx,x=(t-1)/2∫f(t)dt=∫f(2x+1)2dx=2∫xe^xdx=2∫xde^x=2[xe^x-∫e^xdx]+C=2[xe^x-e^x]+C=2*e^x

f(x)=xe^kx导函数

f(x)=xe^kxf'(x)=x'*e^kx+x*(e^kx)'=e^kx+kx*e^kx=(1+kx)e^kx

求导数f'(x)=1/2xe^2x–1/4e^2x

求f(x)=(1/2)xe^(2x)-(1/4)e^(2x)的导数.f'(x)=(1/2)[e^(2x)+2xe^(2x)]-(1/2)e^(2x)=xe^(2x)如果是求f'(x)=(1/2)xe^

请问f(x)=(xe^x)/(2(1+x)^2)的不定积分怎么做?

这道题目看你对导数是否熟悉,以及做几分题目的感觉.首先把常数提出来,底下分母有平方,可以考虑是否是两个函数相除的导数,易知:e^x/(1+x)的导数就是被积函数,最后再把常数带上

还有个题 不定积分∫f(x)dx=xe^-x+C,则∫(1-x)/f(x)dx=?注 xe^-x是x乘以e的负x次方

第一个等式两边求导,得f(x)=e^-x-(xe^-x)并代入后面的积分中,结果是:e^x+C

求不定积分∫(xe^x)/(e^x+1)^2

令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)d

已知函数f(x)=xe^-x(x属于R)

喜欢这个ID号,答一下.根据题意,g(x),f(x)关于x=1对称,则有:g(1+x)=f(1-x)令x=x-1,则有g(x)=f(2-x)=(2-x)e^(-(2-x))=(2-x)e^(x-2):

∫f(x)dx=xe²*求f(x) e²*+2xe²* *是x

∫f(x)dx=xe²就是求导,因为xe²*是原函数,那么f(x)就是它的导数xe^2x`=e^2x+x*2e^2x就是e²*+2xe²*

设y=y(x)由方程xe^f(u)=e^y确定,其中f的二阶可导,且f'≠1求d^2(y)/dx^2

xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)

函数f(x)=0.5x^2 +e^x -xe^x

f'(x)=(0.5x^2+e^x-xe^x)'=x+e^x-e^x-xe^x=x-xe^x导数等于0时,x等于0请注意最后一项的求导结果(应用乘积函数的求导法则)(F(x)G(x))'=F(x)G'

已知函数f(x)=xe^x(e为自然对数的底数)

(1)对f(x)求导,f'(x)=(x+1)e^x,f'(x)>0,(-1,+∞)增(-∞,-1)减(2)(1,e)f'(1)=2e切线(y-e)=2e(x-1)

已知函数f(x)=x^2+2x,g(x)=xe^2

题目是不是有错,第二个表达式,你确定是这样?再问:是g(x)=xe^x再答: