求级数∞ 2 nx n n=1收敛区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:54:23
求级数∞ 2 nx n n=1收敛区间
(求和符号n=1到正无穷)x^n/(n^2+n)利用逐项求导或逐项求积法,求该级数在收敛区间内的和函数

∑x^n/(n^2+n)=1/x∑(1,+∞)x^(n+1)/(n²+n)收敛区间[-1,1]【∑(1,+∞)x^(n+1)/(n²+n)】''=【∑(1,+∞)x^n/n】'=∑

求级数∑(2n-1)x^(n-1)的收敛区间及和函数

收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:

f(x)=ln(2+x)的麦克劳林级数为?收敛区间为?

所谓麦克劳林级数就是函数在x=0处的泰勒展开.给你的一点提示吧.不过为了展开方便,可以另ln(2+x)=ln(1+t),其中,t=1+x.这样在展开即可.要求它的收敛区间,需要等你把它展开后才能求.没

求级数∑1/[n(2n-1)]*x^2n在其收敛区间内的和函数

再答:这道题我做了很长时间

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

求级数的收敛区间∑(1到无穷) * 2^(-nx) / n^n 尤其是端点处的情况,..

用比值判别法(ratiotest)令an=n!*2^(-nx)/n^na(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)=2^(-x)*n^n/(n+1)^n=2^(-x)*[

求级数的收敛域∞ (2x+1)^n∑ __________n=1 3n-1

令t=2x+1,∞t^n原式化为∑__________n=13n-1a3n+13n-1因为ρ=lim|__n+1_______|=lim__________=lim__________=1n→∞an→

求级数在收敛区间的和函数

当x0时1+2x+3x^2+4x^3+.=(x+x^2+x^3+x^4+.)'=(x/(1-x))'=.收敛范围为(-1,1)再问:我问的是收敛区间内的和函数不是收敛区间再答:(x/(1-x))'计算

1求收敛半径及收敛区间.2求和函数

收敛域[-2,2),可用求导求积法求和.

判断级数∑(∞ n=2) -1^n/2^n-1的敛散性,若收敛,是绝对收敛,还是条件收敛,为什么

∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n

级数 柯西收敛准则∞ ∑ ( 1/(2n+1)+1/(2n+2) )n=0由级数柯西收敛准则判断敛散性?

判别级数   ∑[1/(2n+1)+1/(2n+2)]的敛散性用不着柯西收敛准则,用比较判别法足矣:因   lim(n→∞)[1/(2n+1)+1/(2n+2)]/(1/n)  =lim(n→∞)[1

求级数∑(2n+1)x^n在其收敛区间内的和函数

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

1.求幂级数∑(∞,n=1) nx^(n+1)的收敛半径、收敛区间.

∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再

求级数∑∞n=1(1/2n)(x^n^2)的收敛域

级数为   ∑{n>=1}[x^(n^2)]/(2n),由于   lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)|  =lim(n→inf.)|x^

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/