求级数∞ 2 nx n n=1收敛区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:54:23
∑x^n/(n^2+n)=1/x∑(1,+∞)x^(n+1)/(n²+n)收敛区间[-1,1]【∑(1,+∞)x^(n+1)/(n²+n)】''=【∑(1,+∞)x^n/n】'=∑
收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:
lim(n→∞)|[x^(2n+1)/(2n+1)]/[(x^(2n-1)/(2n-1)]=x²
所谓麦克劳林级数就是函数在x=0处的泰勒展开.给你的一点提示吧.不过为了展开方便,可以另ln(2+x)=ln(1+t),其中,t=1+x.这样在展开即可.要求它的收敛区间,需要等你把它展开后才能求.没
再答:这道题我做了很长时间
令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1
〔ln(1-X)〕/x
解答如下:
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
用比值判别法(ratiotest)令an=n!*2^(-nx)/n^na(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)=2^(-x)*n^n/(n+1)^n=2^(-x)*[
令t=2x+1,∞t^n原式化为∑__________n=13n-1a3n+13n-1因为ρ=lim|__n+1_______|=lim__________=lim__________=1n→∞an→
当x0时1+2x+3x^2+4x^3+.=(x+x^2+x^3+x^4+.)'=(x/(1-x))'=.收敛范围为(-1,1)再问:我问的是收敛区间内的和函数不是收敛区间再答:(x/(1-x))'计算
收敛域[-2,2),可用求导求积法求和.
∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n
判别级数 ∑[1/(2n+1)+1/(2n+2)]的敛散性用不着柯西收敛准则,用比较判别法足矣:因 lim(n→∞)[1/(2n+1)+1/(2n+2)]/(1/n) =lim(n→∞)[1
∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(
∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再
级数为 ∑{n>=1}[x^(n^2)]/(2n),由于 lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)| =lim(n→inf.)|x^
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/