求级数Σ1 n^2收敛到
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:16:09
由于级数∑an收敛,所以an->0.于是存在充分大的N,当n>N时,有anN,an^2由于级数收敛只要考虑尾项,而∑an^2的尾项已经被∑an控制住了,所以后者收敛推出前者收敛
收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
1/2^(n+(-1)^n)
(2^n)(a^n)=(2a)^n要使级数收敛,2a
令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1
先判断是否绝对收敛,如下:
再问:错的,答案是三分之一再答:
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
用比值判别法(ratiotest)令an=n!*2^(-nx)/n^na(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)=2^(-x)*n^n/(n+1)^n=2^(-x)*[
显然发散,级数收敛,其每项都最终收敛到0,而这个级数的每项最终都不收敛到零,级数自己怎么可能收敛再问:ln(n/(2n+1))虽然本身自己发散但是在远原技术中他的一项减去第二项再加第三项,这样你就能保
sin(nπ/2)/n=1-1/3+1/5-1/7+.由莱布尼兹交错级数判别定理:级数1-1/3+1/5-1/7+.收敛但级数1/(2n-1)发散故原级数条件收敛
∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(
条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑
p>1,绝对收敛;0
原式=(1/3)×(1/2-1/5+1/3-1/6+1/4-1/7+1/5-1/8+……+1/(n+1)-1/(n+4))=(1/3)×(1/2+1/3+1/4-1/(n+2)-1/(n+3)-1/(
级数为 ∑{n>=1}[x^(n^2)]/(2n),由于 lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)| =lim(n→inf.)|x^
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
sin(2/n)>sin(2/n+1),limsin(2/n)=0,莱布尼兹定理,收敛limsin(2/n)/(2/n)=1,∑2/n发散,条件收敛
/>再问:不好意思,我写得不清楚,是(根号an)/n还有,an收敛,也可能是a(n+1)\an=1这不严密再答:再问:.....limn/(n+1)*lim根号(a(n+1)/an)前者=1,后者不确